​​​​​​​​​​​​​​​​​​​​​​​

 

 

Richard Williamson, Ph.D.https://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=54Richard Williamson, Ph.D. Dr. Richard L. Williamson is a Laboratory Fellow at Idaho National Laboratory. With a career spanning over 40 years at INL, Rich has extensive experience in many key areas of computational methods research and model development, including nonlinear thermo-mechanics, fracture mechanics, shock wave and detonation, and thermal plasma spray. From 2009 to 2016, Rich led the team developing Bison, INL’s state-of-the-art nuclear fuel performance code, which is currently in use at numerous national and international laboratories, at roughly twenty universities, with growing acceptance in industry. He is currently Technical Lead of the Fuels Area within the DOE-NE Nuclear Energy Modeling and Simulation program. He is the author or co-author of approximately 180 scientific publications, including over 50 peer-reviewed journal articles while there are several thousand citations to his work. Rich was given the INL Laboratory Director's Award for Exceptional Scientific Achievement in 2014. <div class="ExternalClass859FCF55F7EB4FE9A17FD2FFCD23B3C2">Ph.D., Mechanical Engineering - University of Idaho<br>M.S., Mechanical Engineering - Brigham Young University<br>B.S., Mechanical Engineering - Brigham Young University<br></div><div class="ExternalClassCF25BA986D6743BBA48F6261B7DB9DC5"><p>JOURNAL ARTICLES</p><p>P. Van Uffelen, J. Hales, W. Li, G. Rossiter, R. Williamson, "A Review of Fuel Performance Modeling," <em>Journal of Nuclear Materials</em>, <strong>516</strong>, 373 (2019)</p><p>S. Stimpson, J. Powers, K. Clarno, R. Pawlowski, R. Gardner, S. Novascone, K. Gamble, R. Williamson, "Pellet-clad mechanical interaction screening using VERA applied to Watts Bar Unit 1, Cycles 1–3," <em>Nuclear Engineering and Design</em>, <strong>327</strong>, 172 (2018)</p><p>T. Barani, E. Bruschi, D. Pizzocri, G. Pastore, P. Van Uffelen, R. L. Williamson, L. Luzzi, "Analysis of Transient Fission Gas Behaviour in Oxide Fuel Using BISON and TRANSURANUS," <em>Journal of Nuclear Materials, </em><strong>486</strong>, 96 (2017)</p><p style="text-align:left;">M. R. Tonks, D. Andersson, S. R. Phillpot, Y. Zhang, R. L. Williamson, C. R. Stanek, B. P Uberuaga, S. L. Hayes, "Mechanistic Materials Modeling for Nuclear Fuel Performance," <em>Annals of Nuclear Energy</em>, <strong>105</strong>, 11 (2017)</p><p style="text-align:left;">R. L. Williamson, N. A. Capps, W. Liu, Y. R. Rashid, B. D. Wirth, "Multi-Dimensional Simulation of LWR Fuel Behavior in the BISON Fuel Performance Code," <em>Journal of the Minerals, Metals and Materials Society</em>, <strong>68</strong>, 2930 (2016)</p><p style="text-align:left;">B. W. Spencer, R. L. Williamson, D. S. Stafford, S. R. Novascone, J. D. Hales, G. Pastore, "3D Modeling of Missing Pellet Surface Defects in BWR Fuel," <em>Nuclear Engineering and Design</em>, <strong>307</strong>, 155 (2016)</p><p style="text-align:left;">R. L. Williamson, K. A. Gamble, D. M. Perez, S. R. Novascone, G. Pastore, R. J. Gardner, J. D. Hales, W. Liu, A. Mai, "Validating the BISON Fuel Performance Code to Integral LWR Experiments," <em>Nuclear Engineering and Design, </em><strong>301, </strong>232<em> </em>(2016)</p><p style="text-align:left;">M. R. Tonks, X. Liu, D.  A. Andersson, D. M. Perez, A. Chernatynskiy, G. Pastore, C. R. Stanek, R. L. Williamson, "Development of a Multiscale Thermal Conductivity Model for Fission Gas in UO<sub>2</sub>," <em>Journal of Nuclear Materials, </em><strong>469</strong>, 89 (2016)</p><p style="text-align:left;">S. R. Novascone, B. W. Spencer, J. D. Hales and R. L. Williamson, "Evaluation of Coupling Approaches for Thermomechanical Simulations," <em>Nuclear Engineering and Design, </em><strong>295</strong>, 910 (2015)</p><p style="text-align:left;">J. D. Hales, M. R. Tonks, F. N. Gleicher, B. W. Spencer. S. R. Novascone, R. L. Williamson, G. Pastore and D. M. Perez, "Advanced Multiphysics Coupling for LWR Fuel Performance Analysis," <em>Annals of Nuclear Energy</em>, <strong>84</strong>, 98 (2015)</p><p style="text-align:left;">J. D. Hales, M. R. Tonks, K. Chockalingam, D. M. Perez, S. R. Novascone, B. W. Spencer, R. L. Williamson, "Asymptotic Expansion Homogenization for Multiscale Nuclear Fuel Analysis," <em>Computational Materials Science</em>, <strong>99</strong>, 290 (2015) </p><p style="text-align:left;">G. Pastore, L. P. Swiler, J. D. Hales, S. R. Novascone, D. M. Perez, B. W. Spencer, L. Luzzi, P. Van Uffelen, R. L. Williamson, "Uncertainty and Sensitivity Analysis of Fission Gas Behavior in Engineering-Scale Fuel Modeling," <em>Journal of Nuclear Materials</em>, <strong>456</strong>, 398 (2015)</p><p style="text-align:left;">D. A. Andersson, X.-Y. Liu, G. Pastore, P. Garcia, M. Tonks, P. Millett, B. Dorado, D. R. Gaston, D. Andrs, R. L. Williamson, R. C. Martineau, B. P Uberuaga and C. R. Stanek, "Atomistic Modeling of the Intrinsic and Radiation-enhanced Fission Gas (Xe) Diffusion in UO<sub>2</sub>: Implications for Nuclear Fuel Performance Modeling," <em>Journal of Nuclear Materials</em>, <strong>451</strong>, 225 (2014)</p><p style="text-align:left;">J. D. Hales, S. R. Novascone, B. W. Spencer, R. L. Williamson, G. Pastore and D. M. Perez, "Verification of the BISON Fuel Performance Code," <em>Annals of Nuclear Energy</em>, <strong>71,</strong> 81 (2014)</p><p style="text-align:left;">J. D. Hales, R. L. Williamson, S. R Novascone, D. M. Perez, B. W. Spencer and G. Pastore, "Multidimensional Multiphysics Simulation of TRISO Particle Fuel," <em>Journal of Nuclear Materials</em>, <strong>443</strong>, 531 (2013)</p><p style="text-align:left;">M. R. Tonks, P. Millett, P. Nerikar, S. Du, D. Andersson, C. Stanek, D. Gaston, D. Andrs and R. Williamson, "Multiscale Development of a Fission Gas Thermal Conductivity Model: Coupling Atomic, Meso and Continuum Level Simulations," <em>Journal of Nuclear Materials</em>, <strong>440</strong>, 193 (2013)</p><p style="text-align:left;">J. D. Hales, S. R. Novascone, R. L. Williamson, D. R. Gaston and M. R. Tonks, "Solving Nonlinear Solid Mechanics Problems with the Jacobian-Free Newton Krylov Method," <em>Computer Modeling in Engineering and Sciences</em>, <strong>84,</strong> 123 (2012) (doi.org/10.3970/cmes.2012.084.123)</p><p style="text-align:left;">D. Gaston, L. Guo, G. Hansen, H. Huang, R. Johnson, H. Park, R. Podgorney, M. Tonks and R. Williamson, "Parallel Algorithms and Software for Nuclear, Energy, and Environmental Applications. Part I: Multiphysics Algorithms," <em>Communications in Computational Physics</em>, <strong>12</strong>, 807 (2012) (doi: 10.4208/cicp.091010.140711s)</p><p style="text-align:left;">D. Gaston, L. Guo, G. Hansen, H. Huang, R. Johnson, H. Park, R. Podgorney, M. Tonks and R. Williamson, "Parallel Algorithms and Software for Nuclear, Energy, and Environmental Applications. Part II: Multiphysics Software," <em>Communications in Computational Physics</em>, <strong>12</strong>, 834 (2012) (doi: 10.4208/cicp.091010.150711s)</p><p style="text-align:left;">R. L. Williamson, J. D. Hales, S. R. Novascone, M. R. Tonks, D. R. Gaston, C. J. Permann, D. Andrs and R. C. Martineau, "Multidimensional Multiphysics Simulation of Nuclear Fuel Behavior," <em>Journal of Nuclear Materials</em>, <strong>423</strong>, 149 (2012) (doi: 10.1016/j.jnucmat.2012.01.012)</p><p style="text-align:left;">R. L. Williamson, "Enhancing the ABAQUS Thermomechanics Code to Simulate Multipellet Steady and Transient LWR Fuel Rod Behavior," <em>Journal of Nuclear Materials</em>, <strong>415</strong>, 74 (2011) (doi:10.1016/j.jnucmat.2011.05.044) </p><p style="text-align:left;">K. D. Hamman, R. L. Williamson, E. D. Steffler, C. T. Wright, J. R. Hess and P. A. Pryfogle, "Structural Analysis of Wheat Stems," <em>Applied Biochemistry and Biotechnology</em>, <strong>121</strong>, 71 (2005)</p><p>H. Xiong, L. L. Zheng, S. Sampath, R. L. Williamson and J. R. Fincke, "Three Dimensional Simulation of Plasma Spray: Effects of Carrier Gas Flow and Particle Injection on Plasma Jet and Entrained Particle Behavior," <em>International Journal of Heat and Mass Transfer</em>, <strong>47</strong>, 5189 (2004) </p><p> </p><p style="text-align:left;">J. R. Fincke, D. M. Crawford, S. C. Snyder, W. D. Swank, D. C. Haggard and R. L. Williamson, "Entrainment in High-Velocity, High Temperature Plasma Jets, Part I: Experimental Results," <em>International Journal of Heat and Mass Transfer</em>,<strong>46</strong>, 4201 (2003)</p><p style="text-align:left;">R. L. Williamson, J. R. Fincke, D. M. Crawford, S. C. Snyder, W. D. Swank, and D. C. Haggard, "Entrainment in High-Velocity, High Temperature Plasma Jets, Part II: Computational Results and Comparison to Experiment," <em>International Journal of Heat and Mass Transfer</em>, <strong>46</strong>, 4215 (2003)</p><p style="text-align:left;">Y. P. Wan, S. Sampath, V. Prasad, R. Williamson, J. R. Fincke, "An Advanced Model for Plasma Spraying of Functionally Graded Materials," <em>Journal of Materials Processing Technology</em>, <strong>137</strong>, 110 (2003)</p><p style="text-align:left;">R. L. Williamson, J. K. Wright, E. D. Steffler, and R. M. Cannon, "Numerical Analysis of Surface Cracks at Regions of Curvature in Oxide Scales," <em>Materials Science and Engineering A</em>, <strong>342</strong>, 109 (2003)</p><p style="text-align:left;">H. A. Bruck, D. Casem, R. L. Williamson, and J. S. Epstein, "Characterization of Short Duration Stress Pulses Generated by Impacting Laminated Carbon-Fiber/Epoxy Composites with Magnetic Flyer Plates," <em>Experimental Mechanics</em>, <strong>42</strong>, 279 (2002)</p><p style="text-align:left;">R. L. Williamson, J. R. Fincke, and C. H. Chang, "Numerical Study of the Relative Importance of Turbulence, Particle Size and Density, and Injection Parameters on Particle Behavior During Thermal Plasma Spraying<em>," Journal of Thermal Spray Technology, </em><strong>11</strong>, 107 (2002)</p><p style="text-align:left;">Y. P. Wan, V. Gupta, Q. Deng, S. Sampath, V. Prasad, R. Williamson, and J. R. Fincke, "Modeling and Visualization of Plasma Spraying of Functionally Graded Materials and its Application to the Optimization of Spray Conditions," <em>Journal of Thermal Spray Technology</em>, <strong>10</strong>, 382 (2001)</p><p style="text-align:left;">D. Renusch, G. Muralidharan, S. Uran, M. Grimsditch, B. W. Veal, J. K. Wright, and R. L. Williamson, "Effect of Edges and Corners on Stresses in Thermally Grown Alumina Scales," <em>Oxidation in Metals</em>, <strong>53</strong>, 171 (2000)</p><p style="text-align:left;">R. L. Williamson, J. R. Fincke, and C. H. Chang, "A Computational Examination of the Sources of Statistical Variance in Particle Parameters During Thermal Plasma Spraying<em>," Plasma Chemistry and Plasma Processing</em>, <strong>20</strong>, 299 (2000)</p><p style="text-align:left;">J. K. Wright, R. L. Williamson, D. Renusch, B. Veal, M. Grimsditch, P. Y. Hou, and R. M. Cannon, "Residual Stresses in Convoluted Oxide Scales," <em>Materials Science & Engineering</em>, <strong>A262</strong>, 246 (1999) </p><p style="text-align:left;">B. H. Rabin, R. L. Williamson, H. A. Bruck, X. L. Wang, T. R. Watkins, Y. Z. Feng and D. R. Clarke, "Residual Strains in an Al<sub>2</sub>O<sub>3</sub>-Ni Joint Bonded with a Composite Interlayer: Experimental Measurements and FEM Predictions," <em>Journal of the American Ceramic Society</em>, <strong>81</strong>, 1541 (1998)</p><p style="text-align:left;">J. K. Wright, R. L. Williamson, and R. M. Cannon, "Finite Element Analysis of the Effects of Corners on Residual Stresses in Protective Oxide Scales," <em>Materials Science & Engineering</em>, <strong>A230</strong>, 202 (1997)</p><p style="text-align:left;">X. L. Wang, C. R. Hubbard, S. Spooner, S. A. David, B. H. Rabin, and R. L. Williamson, "Mapping of the Residual Stress Distribution Within a Brazed Zirconia-Iron Joint," <em>Materials Science & Engineering</em>, <strong>A211</strong>, 45 (1996)</p><p style="text-align:left;">J. B. Salsman, R. L. Williamson, W. K. Tolley, and D. A. Rice, "Short-Pulse Microwave Treatment of Disseminated Sulfide Ores," <em>Minerals Engineering</em>, <strong>9</strong>, 43 (1996).</p><p style="text-align:left;">B. H. Rabin, R. L. Williamson, and S. Suresh, "Fundamentals of Residual Stresses in Joints Between Dissimilar Materials, <em>Materials Research Society Bulletin</em>, <strong>20</strong>, 37 (1995)</p><p style="text-align:left;">R. L. Williamson, B. H. Rabin, and G. E. Byerly, "FEM Study of the Effects of Interlayers and Creep in Reducing Residual Stresses and Strains in Ceramic-Metal Joints," <em>Composites Engineering</em>, <strong>5</strong>, 851 (1995)</p><p style="text-align:left;">G. E. Korth and R. L. Williamson, "Dynamic Consolidation of Metastable Nano-Crystalline Powders," <em>Metallurgical Transactions</em>, <strong>26A,</strong> 2571 (1995)</p><p style="text-align:left;">J. K. Wright, R. L. Williamson, and K. J. Maggs, "Finite Element Analysis of the Effectiveness of Interlayers in Reducing Thermal Residual Stresses in Diamond Films," <em>Materials Science & Engineering</em>, <strong>A187</strong>, 87 (1994) </p><p style="text-align:left;">R. L. Williamson, B. H. Rabin, and J. T. Drake, "Finite Element Analysis of Thermal Residual Stresses at Graded Ceramic/Metal Interfaces, Part I: Model Description and Geometrical Effects," <em>Journal of Applied Physics</em>, <strong>74</strong>, 1310 (1993)</p><p style="text-align:left;">J. T. Drake, R. L. Williamson, and B. H. Rabin, "Finite Element Analysis of Thermal Residual Stresses at Graded Ceramic/Metal Interfaces, Part II: Optimization for Residual Stress Reduction," <em>Journal of Applied Physics</em>, <strong>74</strong>, 1321 (1993)</p><p style="text-align:left;">R. L. Williamson and B. H. Rabin, "Numerical Modeling of Residual Stresses in Graded Ceramic-Metal Joints," <em>Ceramic Transactions</em><strong>, 35</strong>, 239 (1993)</p><p style="text-align:left;">R. L. Williamson and B. H. Rabin, "Numerical Modeling of Residual Stresses in Ni-Al<sub>2</sub>O<sub>3 </sub>Functional Gradient Materials," <em>Ceramic Transactions</em>, <strong>34</strong>, (1993)</p><p style="text-align:left;">R. L. Williamson, J. R. Knibloe, and R. N. Wright, "Particle-Level Investigation of Densification During Uniaxial Hot Pressing: Continuum Modeling and Experiments," <em>ASME Journal of Engineering Materials and Technology,</em> <strong>114</strong>, 105 (1992)</p><p style="text-align:left;">B. H. Rabin, G. E. Korth, and R. L. Williamson, "Fabrication of TiC-Al<sub>2</sub>O<sub>3 </sub>Composites by Combustion Synthesis and Subsequent Dynamic Consolidation," <em>International Journal of Self-Propagating High-Temperature Synthesis</em>, <strong>1</strong>, 336 (1992)</p><p style="text-align:left;">R. N. Wright, R. L. Williamson, and J. R. Knibloe, "Modeling of Hipping Consolidation Applied to Ni<sub>3</sub>Al<sub> </sub>Powders," <em>Powder Metallurgy</em>, <strong>33</strong>, 253 (1990)</p><p style="text-align:left;">R. L. Williamson, "Parametric Studies of Dynamic Powder Consolidation Using a Particle-Level Numerical Model," <em>Journal of Applied Physics</em>, <strong>68</strong>, 1287 (1990)</p><p style="text-align:left;">B. H. Rabin, G. E. Korth, and R. L. Williamson, "Fabrication of TiC-Al<sub>2</sub>O<sub>3 </sub>Composites by Combustion Synthesis and Subsequent Dynamic Consolidation," <em>Journal of the American Ceramic Society</em>, <strong>73</strong>, 2156 (1990)</p><p style="text-align:left;">R. L. Williamson, R. N. Wright, G. E. Korth, and B. H. Rabin, "Numerical Simulation of Dynamic Consolidation of a SiC Fiber Reinforced Aluminum Composite," <em>Journal of Applied Physics</em>, <strong>66</strong>, 1826 (1989)</p><p style="text-align:left;">J. E. Flinn, R. L. Williamson, R. A. Berry, R. N. Wright, Y. M. Gupta, and M.Williams, "Dynamic Consolidation of Type 304 Stainless Steel Powders in Gas Gun Experiments," <em>Journal of Applied Physics</em>, <strong>64</strong>, 1446 (1988)</p><p style="text-align:left;">T. B. Merala, H. W. Chan, D. G. Howitt, P. V. Kelsey, G. E. Korth and R. L. Williamson, "Dislocation Microstructures in Explosively Deformed Hard Materials," <em>Materials Science & Engineering</em>, <strong>A105</strong>, 293 (1988)<br></p><p>CONFERENCE PROCEEDINGS</p><p> </p><p>R. Gardner, C. Permann, M. Bernard and R. Williamson, "Demonstration of Bison-TRACE Coupling (CRAB) Through Validation Case LOFT L2-5," 2019 Water Reactor Fuel Performance Meeting, Seattle, USA, September 22-26, 2019.</p><p> </p><p>J. Y. R. Rashid, W. Liu, R. L. Williamson, "Bison as a PCI Screening Tool – PCI Failure Model Development," 2019 Water Reactor Fuel Performance Meeting, Seattle, USA, September 22-26, 2019.</p><p> </p><p>W. Liu, J. Alvis, J. Y. R. Rashid, C. Folsom, R. L. Williamson, "Bison Application to the Analysis of LWR Fuel Responses under Accident Conditions," 2019 Water Reactor Fuel Performance Meeting, Seattle, USA, September 22-26, 2019.</p><p> </p><p> </p><p>M. Dostal, G. Rossiter, A. Dethioux, J. Zhang, M. Amaya, D. Rozzia, R. Williamson, T. Kozlowski, I. Hill, J. Martin, "OECD/NEA Benchmark on Pellet-Clad Mechanical Interaction Modelling with Fuel Performance Codes: Impact of Number of Radial Pellet Cracks and Pellet-Clad Friction Coefficient," 2018 Water Reactor Fuel Performance Meeting, Prague, Czech Republic, September 30-October 4, 2018.</p><p> </p><p>R. L. Williamson, G. Pastore, B. W. Spencer, J. D. Hales and T. Tverberg, "BISON Validation for LOCA and PCMI Behaviour Using Measurements From the Halden Reactor Project," Paper F2.5, Enlarged Halden Program Group Meeting, Lillehammer, Norway, September 24-29, 2017.</p><p> </p><p>G. Pastore, C. P. Folsom, R. L. Williamson, J. D. Hales, L. Luzzi, D. Pizzocri and T. Barani, "Modelling Fission Gas Behaviour with the BISON Fuel Performance Code," Paper F6.3, Enlarged Halden Program Group Meeting, Lillehammer, Norway, September 24-29, 2017.</p><p> </p><p>V. Georgenthum, Charles Folsom, Alain Moal, Olivier Marchand, Richard Williamson, Heng Ban and Daniel Wachs, "SCANAIR-BISON Benchmark on CIP0-1 RIA Test," 2017 Water Reactor Fuel Performance Meeting, Jeju Island, Korea, September 10-14, 2017.</p><p> </p><p>C. P. Folsom, C. B. Jensen, R. L. Williamson, N. E. Woolstenhulme, H. Ban and D. M. Wachs,  </p><p style="text-align:left;">"BISON Modeling of Reactivity-Initiated Accident Experiments in a Static Environment," 2016 LWR Fuel Performance Meeting – Top Fuel, Boise, Idaho, September 11-15, 2016.</p><p style="text-align:left;">F. Gleicher, J. Ortensi, M. DeHart, Y. Wang, S. Schunert, S. Novascone, J. Hales, R. Williamson, A. Slaughter, C. Permann, D. Andrs and Richard Martineau, "The Application of MAMMOTH for a Detailed Tightly Coupled Fuel Pin Simulation with a Station Blackout," 2016 LWR Fuel Performance Meeting – Top Fuel, Boise, Idaho, September 11-15, 2016.</p><p>R. L. Williamson, K. A. Gamble, S. R. Novascone, R. J. Gardner, J. D. Hales, D. M. Perez and G. Pastore, "Verification and Validation of the BISON Fuel Performance Code for PCMI Applications," PCMI Workshop, Lucca, Italy, June 22-24, 2016.</p><p> </p><p>A. Casagranda, B. W. Spencer, G. Pastore, S. R. Novascone, J. D. Hales, R. L. Williamson and R. C. Martineau, "Analysis of Experimental Fuel Rod Parameters Using 3D Modeling of PCMI with MPS Defects," PCMI Workshop, Lucca, Italy, June 22-24, 2016.</p><p> </p><p>A. Casagranda, B. W. Spencer, G. Pastore, S. R. Novascone, J. D. Hales, R. L. Williamson and R. C. Martineau, "Determination of Experimental Fuel Rod Parameters Using 3D Modeling of PCMI With MPS Defect," Paper F4.8, Enlarged Halden Program Group Meeting, Fornebu, Norway, May 8-13, 2016.</p><p> </p><p>G. Pastore, R. L. Williamson, S. R. Novascone, B. W. Spencer and J. D. Hales, "Modelling of LOCA Tests with the BISON Fuel Performance," Paper F6.3, Enlarged Halden Program Group Meeting, Fornebu, Norway, May 8-13, 2016.</p><p> </p><p>C. Folsom, P. Raynaud, A. Zabriskie, R. Williamson, H. Ban and D. Wachs. "Case Comparison Between FRAPTRAN and BISON for an Idealized RIA of a Light Water Reactor," American Nuclear Society Winter Meeting, Washington DC, November 8-12, 2015. </p><p> </p><p style="text-align:left;">G. Pastore, S. R. Novascone, R. L. Williamson, J. D. Hales, B. W. Spencer, S. Stafford, "<em>Modeling of Fuel Behavior During Loss-of-Coolant Accidents Using the BISON Code</em>," 2015 LWR Fuel Performance Meeting – Top Fuel, Zurich, Switzerland, September 13-17, 2015, p. 552.</p><p style="text-align:left;">R. J. Gardner, S. R. Novascone, D. M. Perez, G. Pastore, R. L. Williamson, J. D. Hales, W. Liu, "Improving the Accuracy of PCMI Simulations with More Realistic Geometry and Material Models," 2015 LWR Fuel Performance Meeting – Top Fuel, Zurich, Switzerland, September 13-17, 2015, p. 620.</p><p style="text-align:justify;">F. N. Gleicher, J. Ortensi, B. W. Spencer, Y. Wang, S. R. Novascone, J. D. Hales, D. Gaston, R. L. Williamson, R. C. Martineau, "The Coupling of the Neutron Transport Application RattleSnake to the Nuclear Fuels Performance Application BISON under the MOOSE Framework, PHYSOR 2014 – The Role of Reactor Physics Toward a Sustainable Future, Kyoto, Japan, September 28-October 3, 2014.</p><p style="text-align:left;">J. D. Hales, P. G. Medvedev, S. R. Novascone, D. M. Perez, R. L. Williamson, "Analysis of Double-encapsulated Fuel Rods," Paper F6-9, 2014 Enlarged Halden Programme Group Meeting, Roros, Norway, September 7–12, 2014. </p><p style="text-align:left;">G. Pastore, D. Pizzocri, J. D. Hales, S. R. Novascone, D. M. Perez, B. W. Spencer, R. L. Williamson, P. Van Uffelen, L. Luzzi, "Modeling of Transient Fission Gas Behavior in Oxide Fuel and Application to the BISON Code," Paper F7-4, 2014 Enlarged Halden Programme Group Meeting, Roros, Norway, September 7–12, 2014. </p><p style="text-align:justify;">K. E. Metzger, T. W. Knight and R. L. Williamson, "Model of U<sub>3</sub>Si<sub>2</sub> Fuel System Using BISON Fuel Code," Proceedings of the International Congress on Advances in Nuclear Power Plants, Paper 14343, Charlotte, North Carolina, April 6-9, 2014.</p><p style="text-align:left;">R. L. Williamson, J. D. Hales, S. R. Novascone, G. Pastore, D. M. Perez, B. W. Spencer and R. C. Martineau, "Overview of the BISON Multidimensional Fuel Performance Code," IAEA Technical Meeting: Modeling of Water-Cooled Fuel Including Design-Basis and Severe Accidents, Chengdu, China, October 28–November 1, 2013.</p><p style="text-align:left;">G. Pastore, J. D. Hales, S. R. Novascone, D. M. Perez, B. W. Spencer and R. L. Williamson, "Analysis of Fission Gas Release in LWR Fuel Using the BISON Code," 2013 LWR Fuel Performance Meeting - TopFuel, Charlotte, North Carolina, September 15-19, 2013.</p><p style="text-align:justify;">W. Liu, J. Rashid, D. Sunderland, R. Montgomery, C. Stanek, B. Wirth, J. Hales, and R.  Williamson, "Numerical Method of Modeling Creep of Zirconium-alloy Cladding in a Multi- physics Fuel Performance Code," 2013 LWR Fuel Performance Meeting – TopFuel, Charlotte, North Carolina, September 15-19, 2013.</p><p style="text-align:justify;">J. D. Hales, D. M. Perez, R. L. Williamson, S. R. Novascone, B. W. Spencer, and G. Pastore, "Nuclear fuel modeling with BISON," Fuels & Materials Summer School on Principles of Fuel Behaviour Modelling and Practical Applications, Halden, Norway: OECD Halden Reactor Project, August 26–29 2013.</p><p style="text-align:left;">J. D. Hales, M. R. Tonks, K. Chockalingam, D, M. Perez, S. R. Novascone, B. W. Spencer and R. L. Williamson, "Multiscale Nuclear Fuel Analysis via Asymptotic Expansion Homogenization," 22<sup>nd</sup> International Conference on Structural Mechanics in Reactor Technology (SMIRT-22), San Francisco, California, August 18-23, 2013.</p><p style="text-align:left;">S. R. Novascone, B. W. Spencer, R. L. Williamson, D. Andrs, J. D. Hales and D. M. Perez, "The Effects of Thermomechanics Coupling Strategies in Nuclear Fuels Performance Simulations," 22<sup>nd</sup> International Conference on Structural Mechanics in Reactor Technology (SMIRT-22), San Francisco, California, August 18-23, 2013.</p><p style="text-align:left;">D. M. Perez, R. L. Williamson, S. R. Novascone, T. K. Larson, J. D. Hales, B. W. Spencer and G. Pastore, "An Evaluation of the Nuclear Fuel Performance Code BISON," International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013), Sun Valley, Idaho, May 5-9, 2013.</p><p style="text-align:left;">L. P. Swiler, R. L. Williamson and D. M. Perez, "Calibration of a Fuel Relocation Model in BISON," International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013), Sun Valley, Idaho, May 5-9, 2013.</p><p style="text-align:left;">S. R. Novascone, B. W. Spencer, D. Andrs, R. L. Williamson, J. D. Hales and D. M. Perez, "Results from Tight and Loose Coupled Multiphysics in Nuclear Fuels Performance Simulations using BISON," International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013), Sun Valley, Idaho, May 5-9, 2013.</p><p style="text-align:left;">F. N. Gleicher, B. W. Spencer, S. R. Novascone, R. L. Williamson, R. C. Martineau, M. Rose, T. Downar and B. Collins, "Coupling the Core Analysis Program DeCART to the Fuel Performance Application BISON," International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013), Sun Valley, Idaho, May 5-9, 2013.</p><p style="text-align:justify;">J. D. Hales, D. M. Perez, R. L. Williamson, S. R. Novascone, B. W. Spencer, and R. C. Martineau, "Validation of the BISON 3D fuel performance code: Temperature comparisons for concentrically and eccentrically located fuel pellets," Enlarged Halden Programme Group Meeting: Proceedings of the Fuels and Materials Sessions, vol. HPR-378. Storefjell Resort Hotel, Norway: OECD Halden Reactor Project, March 10–15 2013.</p><p style="text-align:left;">B. W. Spencer, J. D. Hales, S. R. Novascone and R. L. Williamson, "3D Simulation of Missing Pellet Surface Defects in Light Water Reactor Fuel Rods," Proceedings of Top Fuel 2012, Manchester, UK, September 3-5, 2012.</p><p style="text-align:left;">S. R. Novascone, J. D. Hales, B. W. Spencer and R. L. Williamson, "Assessment of PCMI Simulation Using the Multidimensional Multiphysics BISON Fuel Performance Code," Proceedings of Top Fuel 2012, Manchester, UK, September 3-5, 2012.</p><p style="text-align:left;">S. R. Novascone, R. L. Williamson, J. D. Hales, M. R. Tonks, D. R. Gaston, C. J. Permann, D. Andrs and R. C. Martineau, "Multidimensional Multiphysics Simulation of Nuclear Fuel Behavior," PHYSOR 2012, Knoxville, Tennessee, April 15-20, 2012.</p><p>R. L. Williamson and D. A. Knoll, "Enhancing the ABAQUS Thermomechanics Code to Simulate Steady and Transient Fuel Rod Behavior," Proceeding of Top Fuel 2009, Paris, France, September 6-10, 2009.</p><p> </p><p>R. L. Williamson and D. A. Knoll, "Simulating Dynamic Fracture in Oxide Fuel Pellets Using Cohesive Zone Models," 20<sup>th</sup> International Conference on Structural Mechanics in Reactor Technology (SMIRT 20), Espoo, Finland, August 9-14, 2009.</p><p> </p><p>K. D. Hamman, R. L. Williamson, E. D. Steffler, C. T. Wright, J. R. Hess, and P. A. Pryfogle, "Structural Analysis of Wheat Stems," 26<sup>th</sup> Symposium on Biotechnology For Fuels and Chemicals, Chattanooga, TN, May 9th – 12th, 2004.</p><p> </p><p style="text-align:left;">H. Xiong, L. L. Zheng, S. Sampath, J. R. Fincke, and R. L. Williamson, "Three Dimensional Simulation of Plasma Spray Jet," HT2003-47153, ASME Summer Heat Transfer Conference, Las Vegas, Nevada, July 20-23, 2003.</p><p style="text-align:left;">R. L. Williamson, J. R. Fincke, and C. H. Chang, "A Computational Examination of the Sources of Statistical Variance in Particle Parameters During Thermal Spray Processing," International Thermal Spray Conference, ITSC-2000, Montreal, Canada, May 8-11, 2000 – Received "Best Paper" Award.</p><p style="text-align:left;">J. R. Fincke, R. L. Williamson, and C. H. Chang, "Plasma Spraying of Functionally Graded Materials: Measured and Simulated Plasma and Particle Flow Fields," International Thermal Spray Conference, ITSC-2000, Montreal, Canada, May 8-11, 2000. </p><p style="text-align:left;">J. R. Fincke, D. M. Crawford, S. C. Snyder, W. D. Swank, D. C. Haggard, and R. L. Williamson, "Entrainment in High Velocity, High Temperature Thermal Plasma Jets," 18<sup>th</sup> Symposium on Energy Engineering Sciences, Argonne National Laboratory CONG-2000/1, 1999, p 81. </p><p style="text-align:left;">Y. P. Wan, S. Sampath, V. Prasad, R. Williamson, and J. R. Fincke, "Numerical Simulation of Plasma Spraying of Functionally Graded Materials," IMECE-99, Nashville, Tennessee, November 14-19, 1999.</p><p style="text-align:left;">Y. P. Wan, S. Sampath, V. Prasad, R. Williamson, and J. R. Fincke, "An Advanced Model for Plasma Spraying of Functionally Graded Materials," Fifth IUMRS International Conference on Advanced Materials, Beijing, June 13-18, 1999.</p><p style="text-align:left;">R. L. Williamson, J. K. Wright, and R. M. Cannon, "Finite Element Analysis of Surface Cracks at Corners in Protective Oxide Scales," <span style="text-decoration:underline;">Fundamental Aspects of High Temperature Corrosion</span>, edited by D. A. Shores, R. Rapp, and P. Y. Hou, (Electrochemical Society, Pennington, New Jersey, 1997) p 16.</p><p style="text-align:left;">J. K. Wright, R. L. Williamson, P. Y. Hou, R. M. Cannon, D. Renusch, B. Veal, M. Grimsditch, "Finite Element Modeling of the Effect of Interface Anomalies on Thermal Stresses in Alumina Scales,"<span style="text-decoration:underline;"> </span><span style="text-decoration:underline;">Fundamental Aspects of High Temperature Corrosion</span>, edited by D. A. Shores, R. Rapp, and P. Y. Hou, (Electrochemical Society, Pennington, New Jersey, 1997). </p><p style="text-align:left;">M. Grimsditch, D. Renusch, B. W. Veal, J. K. Wright, and R. L. Williamson, "Stresses in Thermally Grown Alumina Scales Near Edges and Corners," <span style="text-decoration:underline;">Fundamental Aspects of High Temperature Corrosion</span>, edited by D. A. Shores, R. Rapp, and P. Y. Hou, (Electrochemical Society, Pennington, New Jersey, 1997) p 62. </p><p style="text-align:left;">B. H. Rabin, R. L. Williamson, H. A. Bruck, X.-L. Wang, T. R. Watkins, and D. R. Clarke, "Residual Strains and Stresses in an Al<sub>2</sub>O<sub>3</sub>-Ni Joint Bonded with a Composite Interlayer:  FEM Predictions and Experimental Measurements," <span style="text-decoration:underline;">Functionally Graded Materials</span>, edited by I. Shiota and M. Y. Miyamoto, (Elsevier Science B. V., Amsterdam, The Netherlands, 1997) p. 387.</p><p style="text-align:left;">J. K. Wright and R. L. Williamson, "Effects of Substrate Curvature and Roughness on Residual Stresses in Oxide Films," <span style="text-decoration:underline;">1997 Annual Meeting of the Minerals, Metals & Materials Society</span>, Orlando, Florida, February 9-13, 1997, presentation only.</p><p style="text-align:left;">R. L. Williamson, J. K. Wright, and R. M. Cannon, "Numerical Analysis of the Effects of Substrate Corners and Interface Convolution on Residual Stresses in Oxide Scales," <span style="text-decoration:underline;">190th Meeting of the Electrochemical Society</span>, San Antonio, Texas, October 6-11, 1996.</p><p style="text-align:left;">P. Y. Hou, R. M. Cannon, H. Zhang, and R. L. Williamson, "Interface Convolution and its Effect on Alumina Scale Spallation," <span style="text-decoration:underline;">190th Meeting of the Electrochemical Society</span>, San Antonio, Texas, October 6-11, 1996.</p><p style="text-align:left;">X.-L. Wang, B. H. Rabin, R. L. Williamson, H. A. Bruck, and T. R. Watkins, "Residual Stress Distribution in an Al<sub>2</sub>O<sub>3</sub>-Ni Joint Bonded with a Composite Layer," <span style="text-decoration:underline;">Layered Materials for Structural Applications</span>, vol. 434, (Materials Research Society, Pittsburgh, PA, 1996) p.177.</p><p style="text-align:left;">"Effects of Substrate Curvature on Residual Stresses in Oxide Films: FEM Solutions and Optical Fluorescence Experiments," <span style="text-decoration:underline;">1996 Annual Meeting of the Minerals, Metals & Materials Society</span>, Anaheim, California, February 5-8, 1996, presentation only.</p><p style="text-align:left;">B. H. Rabin, R. L. Williamson, and H. A. Bruck, "Residual Strains and Stresses in Ceramic-Metal Joints and Functionally Gradient Materials: FEM Analyses and Model Experiments on Al<sub>2</sub>O<sub>3</sub>-Ni," <span style="text-decoration:underline;">Engineering Foundation Conference on Mechanics and Physics of Layered and Graded Materials</span>, Davos, Switzerland, August 20-25, 1995.</p><p style="text-align:left;">R. L. Williamson, B. H. Rabin, H. A. Bruck, and X.-L. Wang, "Residual Stresses in Graded Materials: A Comparison of FEM Modeling and Neutron Diffraction Experiments," <span style="text-decoration:underline;">Second International Conference on Composites Engineering</span>, edited by D. Hui, (ICCE, University of New Orleans, New Orleans, Louisiana, 1995) p. 813.</p><p style="text-align:left;">H. A. Bruck, B. H. Rabin, and R. L. Williamson, "Mechanical Behavior of Metal Matrix and Ceramic Matrix Composites for FGMs," <span style="text-decoration:underline;">Second International Conference on Composites Engineering</span>, edited by D. Hui, (ICCE, University of New Orleans, New Orleans, Louisiana, 1995) p. 95.</p><p style="text-align:left;">X. L. Wang, C. R. Hubbard, S. Spooner, S. A. David, B. H. Rabin, and R. L. Williamson, "Measurement and Modeling of the Residual Stress Distribution on a Brazed Zirconia-Cast Iron Joint," <span style="text-decoration:underline;">Materials Research Society 1994 Fall Meeting</span>, Boston, Massachusetts, November 28-December 2, 1994.</p><p style="text-align:left;">T. R. Watkins, X. -L. Wang, S. Spooner, C. R. Hubbard, S. J. Vance, B. H. Rabin, and R. L. Williamson, "Mapping of Residual Strains of a Ceramic-to-Metal Joint Using X-ray Diffraction," <span style="text-decoration:underline;">Proceedings of the Fourth International Conference on Residual Stresses</span> (Society for Experimental Mechanics, Bethel, Connecticut, 1994) p. 672.</p><p style="text-align:left;">B. H. Rabin, R. L. Williamson, T. R. Watkins, X. L. Wang, C. R. Hubbard, and S. Spooner, "Characterization of Residual Stresses in Graded Ceramic-Metal Structures: A Comparison of Diffraction Experiments and FEM Calculations," <span style="text-decoration:underline;">Proceedings Third International Symposium Functional Gradient Materials</span>, (Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland, 1995) p. 209.</p><p style="text-align:left;">R. L. Williamson, B. H. Rabin, and G. Byerly, "Residual Stresses in Joined Ceramic-Metal Structures: FEM Studies of Interlayer and Creep Effects," <span style="text-decoration:underline;">Proceedings Third International Symposium Functional Gradient Materials</span>, (Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland, 1995) p. 215.</p><p style="text-align:left;">J. B. Salsman, R. L. Williamson, W. K. Tolley, and D. A. Rice, "Improved Comminution Through Short-Pulse Microwave Treatment," <span style="text-decoration:underline;">AICHe 1st International Particle Technology Forum</span>, Denver, Colorado, August 17-19, 1994.</p><p style="text-align:left;">R. L. Williamson, J. B. Salsman, and W. K. Tolley, "Modeling the Thermomechanical Response of Ore Materials During Microwave Processing," <span style="text-decoration:underline;">Materials Research Society 1994 Spring Meeting</span>, San Francisco, California, April 4-8, 1994.</p><p style="text-align:left;">B. H. Rabin and R. L. Williamson, "Design and Fabrication of Ceramic-Metal Gradient Materials," <span style="text-decoration:underline;">Processing and Fabrication of Advanced Materials III</span>, edited by V. A. Ravi, T. S. Srivatsan, and J. J. Moore, (The Minerals, Metals, & Materials Society, Warrendale, Pennsylvania, 1994) p. 145.</p><p style="text-align:left;">J. S. Epstein, W. R. Lloyd, M. B. Ward, V. A. Deason, R. L. Williamson, and J. E. Page, "A Biaxial Load System for Elastic-Plastic Interface Testing," <span style="text-decoration:underline;">ASME Winter Annual Meeting</span>, New Orleans, Louisiana, November 28-December 3, 1993.</p><p style="text-align:left;">R. L. Williamson, J. T. Drake, and B. H. Rabin, "A Computational Assessment of Thermal Residual Stress Reduction Using Functional Gradient Material (FGM) Interfaces," <span style="text-decoration:underline;">Processing, Fabrication, and Application of Advanced Composites</span>, edited by K. Upadhya, (ASM International, Metals Park, Ohio, 1993) p. 99.</p><p style="text-align:left;">J. T. Drake, R. L. Williamson, and B. H. Rabin, "Numerical Modeling Approach to the Prediction of Optimum Graded Ceramic-Metal Microstructures," <span style="text-decoration:underline;">Residual Stresses in Composites: Measurement, Modeling, and Thermo-Mechanical Properties</span>, edited by E. V. Barrera and I. Dutta (The Minerals, Metals, & Materials Society, Warrendale, Pennsylvania, 1993) p. 25.</p><p style="text-align:left;">B. H. Rabin, R. L. Williamson, R. J. Heaps, and A. W. Erickson, "Ni-Al<sub>2</sub>O<sub>3</sub><sub> </sub>Gradient Materials by Powder Metallurgy," <span style="text-decoration:underline;">Proceedings of the First International Conference on Advanced Synthesis of Engineered Materials</span>, edited by J. J. Moore, E. J. Lavernia, and F. H. Froes, (ASM International, Metals Park, Ohio, 1993) p. 175.</p><p style="text-align:left;">G. E. Korth and R. L. Williamson, "Consolidation of Metastable Tungsten Powders or Wires," <span style="text-decoration:underline;">Tungsten and Tungsten Alloys</span>, edited by A. Bose and R. J. Dowding, (Metal Powder Industries Federation, Princeton, New Jersey, 1993) p. 167.</p><p style="text-align:left;">B. H. Rabin, R. L. Williamson, R. J. Heaps, and A. W. Erickson, "Powder Processing of Nickel-Aluminum Oxide Gradient Materials," <span style="text-decoration:underline;">Advances in Powder Metallurgy & Particulate Materials - 1992, Volume 9: Particulate Materials and Processes</span>, edited by J. M. Capus and R. M. German, (Metal Powder Industries Federation, Princeton, New Jersey, 1992) p. 1.</p><p style="text-align:left;">G. E. Korth, R. L. Williamson, and B. H. Rabin, "Dynamic Compaction of Combustion Synthesized TiC-Al<sub>2</sub>O<sub>3</sub>Composite," <span style="text-decoration:underline;">Shock-Wave and High-Strain-Rate Phenomena in Materials</span>, edited by M. A. Meyers, L. E. Murr, and K. P. Staudhammer, (Marcel Dekker, New York, New York, 1992) p. 283.</p><p style="text-align:left;">R. L. Williamson, J. T. Drake, and B. H. Rabin, "Numerical Modeling of Interface Residual Stresses in Graded Ceramic-Metal Materials," in <span style="text-decoration:underline;">Developments in Ceramic and Metal-Matrix Composites</span>, edited by K. Upadhya, (The Minerals, Metals, & Materials Society, Warrendale, Pennsylvania, 1992) p. 241.</p><p style="text-align:left;">B. H. Rabin and R. L. Williamson, "Graded Ceramic-Metal Microcomposites for Controlling Interface Stresses," in <span style="text-decoration:underline;">Microcomposites and Nanophase Materials</span>, edited by D. C. Van Aken, G. S. Was, and A. K. Ghosh, (The Minerals, Metals, & Materials Society, Warrendale, Pennsylvania, 1991) p. 103.</p><p style="text-align:left;">D. W. Cott, D. A. Rudberg, and R. L. Williamson, "High Explosive Magnetohydrodynamic Pulsed Power," <span style="text-decoration:underline;">29th Symposium on Engineering Aspects of Magnetohydrodynamics</span>, New Orleans, Louisiana, June 18-20, 1991.</p><p style="text-align:left;">W. G. Reuter, W. R. Lloyd, R. L. Williamson, J. A. Smith, and J. S. Epstein, "Relationship Between Equivalent Plastic Strain and Constraint for Crack Initiation," <span style="text-decoration:underline;">23rd National Symposium on Fracture Mechanics</span>, College Station, Texas, June 18-20, 1991.</p><p style="text-align:left;">G. E. Korth, R. L. Williamson, R. N. Wright, and B. H. Rabin, "Dynamic Consolidation of Tungsten Wire Bundles," edited by A. Crowson and E. S. Chen, (The Minerals, Metals, & Materials Society, Warrendale, Pennsylvania, 1990) p. 61.</p><p style="text-align:left;">R. L. Williamson and R. N. Wright, "A Particle-Level Numerical Simulation of the Dynamic Consolidation of a Metal Matrix Composite Material," in <span style="text-decoration:underline;">Shock Waves in Condensed Matter-1989</span>, edited by S. C. Schmidt, J. N. Johnson, and L. W. Davison, (Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 1990) p. 487. </p><p style="text-align:left;">G. E. Korth, R. L. Williamson, and B. H. Rabin, "Metal Matrix Composites From Dynamic Consolidation of Powder Mixtures," in <span style="text-decoration:underline;">Shock Waves in Condensed Matter-1989</span>, edited by S. C. Schmidt, J. N. Johnson, and L. W. Davison, (Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 1990) p. 491. </p><p style="text-align:left;">B. H. Rabin, G. E. Korth, and R. L. Williamson, "Dynamic Consolidation of Aluminum-Silicon Carbide Composites," in <span style="text-decoration:underline;">Metal & Ceramic Matrix Composites: Processing, Modeling & Mechanical Behavior</span>, edited by R. B. Bhagat, A. H. Clauer, P. Kumar and A. M. Ritter, (The Minerals, Metals, & Materials Society, Warrendale, Pennsylvania,1990) p. 281.</p><p style="text-align:left;">W. G. Reuter, S. M. Graham, W. R. Lloyd, and R. L. Williamson, "Ability of Using Experimental Measurements to Predict Crack Initiation for Structural Components," in <span style="text-decoration:underline;">Defect Assessment in Components--Fundamentals and Applications</span>, edited by J. G. Blauel and K.-H. Schwalbe, (ESIS/EGF Publication 9, 1991) p. 175.</p><p style="text-align:left;">G. E. Korth and R. L. Williamson, "Impact Shock Generator from Explosive-Driven Plates," in <span style="text-decoration:underline;">Shock Waves in Condensed Matter-1987</span>, edited by S. C. Schmidt and N. C. Holmes (Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 1988) p. 669.</p><p style="text-align:left;">J. S. Epstein, M. Abdallah, and R. L. Williamson, "Dynamic Moire Interferometry Studies of Strong Elastic Lamb Propagation in AS4/3501-6 Graphite Epoxy Composites," <span style="text-decoration:underline;">1988 ASCE Applied Mechanics Conference</span>, edited by B. Heller, (May 1988) p. 187.</p><p style="text-align:left;">R. L. Williamson and R. A. Berry, "Microlevel Numerical Modeling of the Shock Wave Induced Consolidation of Metal Powders," in <span style="text-decoration:underline;">Shock Waves in Condensed Matter-1985</span>, edited by Y. M. Gupta, (Plenum Press, New York, New York, 1986) p. 341.</p><p style="text-align:left;">R. A. Berry and R. L. Williamson, "Numerical Modeling of the Experimental Dynamic Consolidation of Rapidly Solidified Metal Powders," in <span style="text-decoration:underline;">Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena</span>, edited by L. E. Murr, K. P. Staudhammer, and M. A. Myers, (Marcel Dekker, New York, New York, 1986) p. 67.</p><p style="text-align:left;">R. A. Berry and R. L. Williamson, "A Multiphase Mixture Model for the Shock Induced Consolidation of Metal Powders," in <span style="text-decoration:underline;">Shock Waves in Condensed Matter-</span> <span style="text-decoration:underline;">1985</span>, edited by Y. M. Gupta, (Plenum Press, New York, New York, 1986) p. 335.</p><p style="text-align:left;">R. A. Berry and R. L. Williamson, "Some Applications of the Moving Finite Element Method to Fluid Flow and Related Problems," in <span style="text-decoration:underline;">Advances in Reactor Computations</span>, (American Nuclear Society, LaGrange Park, Illinois, 1983) p. 433.</p><p style="text-align:left;">A. G. Ware and R. L. Williamson, "BLAZER--A RELAP5/MOD1 Post Processor to Generate Force-Time History Input Data for Structural Computer Codes," in <span style="text-decoration:underline;">Fluid Transients and Fluid-Structure Interaction</span>, edited by Y. W. Shin, (American Society of Mechanical Engineers, New York, New York, 1982) p. 183.</p><p style="text-align:left;"> </p><p style="text-align:left;">INVITED PAPERS</p><p style="text-align:left;">R. L. Williamson, "An Overview of Material Models in the BISON Fuel Performance Code," American Nuclear Society Annual Meeting, Embedded Topical: Nuclear Fuels and Structural Materials, New Orleans, Louisiana, June 13-16, 2016.</p><p style="text-align:left;">J. D. Hales, D. M. Perez, R. L. Williamson, S. R. Novascone, B. W. Spencer, and R. C. Martineau, "Validation of the BISON 3D Fuel Performance Code: Temperature Comparisons for Concentrically and Eccentrically Located Fuel Pellets," Extended Halden Program Group Meeting, Gol, Norway, March 11-14, 2013.</p><p style="text-align:left;">J. R. Fincke, C. H. Chang, W. D. Swank, D. C. Haggard and R. L. Williamson, "Measured and Simulated Particle Flow Field Characteristics in High Swirl, Supersonic Plasma Spray," <span style="text-decoration:underline;">1997 TMS Fall Extraction and Processing Conference</span>, Cambridge, Massachusetts, Oct. 5-8, 1997. </p><p style="text-align:left;">B. H. Rabin and R. L. Williamson, "The Effect of Interlayer Properties on Residual Stresses in Ceramic-Metal Joining," <span style="text-decoration:underline;">American Ceramic Society 1996 Annual Meeting</span>, Indianapolis, Indiana, April 14-17, 1996.</p><p style="text-align:left;">B. H. Rabin, R. L. Williamson, and S. Suresh, "Fundamentals of Residual Stresses in Joints Between Dissimilar Materials," MRS Bulletin, <strong>20(1)</strong>, 37 (1995).</p><p style="text-align:left;">R. L. Williamson and J. T. Drake, "Assessing Thermal Residual Stress Reduction from Composition Grading at Material Interfaces: A Numerical Modeling Study," <span style="text-decoration:underline;">Advanced Composites '93 International Conference on Advanced Composite Materials, Wollongong, Australia</span>, edited by T. Chandra and A. K. Dhingra (The Minerals, Metals, & Materials Society, Warrendale, Pennsylvania, 1993) p. 1361.<br></p><p><br></p></div>https://bios.inl.gov/BioPhotos/RichardWilliamson2019.pngMechanical EngineerWilliamsonRichard
Jason Hales, Ph.D.https://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=49Jason Hales, Ph.D. Jason Hales is a computational scientist specializing in parallel, nonlinear, fully-coupled multi-physics software. His technical skills include numerical methods, high performance computing, non-linear solid mechanics, material model development, finite element contact, and multi-physics coupling. Dr. Hales joined INL in 2010 with a principal focus on non-linear solid mechanics capability development. He is the primary author of Bison, INL’s nuclear fuel performance application. Dr. Hales now manages INL’s Computational Mechanics and Materials Department, which develops a set of multi-physics applications in support of several DOE-NE programs. Dr. Hales served in leadership positions in DOE-NE​ programs (Nuclear Energy Advanced Modeling and Simulation (NEAMS) and Consortium for Advanced Simulation of LWRs (CASL)) for six years. In those positions, he oversaw work on the development of models for novel nuclear fuels and materials. He has authored technical papers on computational aspects of mechanics and nuclear fuel behavior in journals such as Computational Mechanics and Journal of Nuclear Materials. Before joining INL he spent nine years at Sandia National Laboratories where he worked on the solid mechanics applications in SIERRA. Dr. Hales holds B.S. and M.S. degrees in civil engineering from Brigham Young University and a Ph.D. in civil engineering from the University of Illinois at Urbana-Champaign. <div class="ExternalClass5695DF14FF814B9CB2690CB233E7DFC5"><p>​Ph.D., Civil Engineering - University of Illinois, Urbana-Champaign</p><p>M.S., CIvil and Environmental Engineering - Brigham Young University</p><p>B.S., Civil and Environmental Engineering - Brigham Young University</p></div><div class="ExternalClassFFDA1EDDDE624A5BBE217B2AA2067026"><p>​<span style="font-size:16px;">​Computational mechanics, numerical methods, multiphysics</span><br></p></div><div class="ExternalClassB864A0A963A54147BC90DCEE320CDE98"><div class="ExternalClassAA81C242E6FC4628A67F8F39770000B2"> <span style="font-size:16px;"> <p>​J. Hales, A. Toptan, W. Jiang, and B. Spencer, “Numerical evaluation of AGR-2 fission product release,” Journal of Nuclear Materials, vol. 558, p. 153325, 2022. Online at <a href="https://www.sciencedirect.com/science/article/pii/S0022311521005481">https://www.sciencedirect.com/science/article/pii/S0022311521005481​</a></p> <p> ​​<br></p> <p> B. Collin, W. Jiang, K. Gamble, R. Gardner, J. Hales, B. Haugh, S. Novascone, J. Roche, B. Spencer, and A. Toptan, “TRISO fuel performance modelling with BISON,” Journal of Physics: Conference Series, vol. 2048, no. 1, p. 012012, 2021. </p> <p> </p> <p>K. Gamble, T. Knight, E. Roberts, J. Hales, and B. Spencer, “Mechanistic verification of empirical UO<span>2</span> ​fuel fracture models,” Journal of Nuclear Materials, vol. 556, p. 153163, 2021. Online at <a href="https://www.sciencedirect.com/science/article/pii/S002231152100386X">https://www.sciencedirect.com/science/article/pii/S002231152100386X</a></p> <p> ​​</p> <p>A. Toptan, W. Jiang, J. D. Hales, B. W. Spencer, A. Casagranda, and S. R. Novascone, “FEA-aided investigation of the effective thermal conductivity in a medium with embedded spheres,” Nuclear Engineering and Design, vol. 381, p. 111355, 2021. Online at <a href="https://www.sciencedirect.com/science/article/pii/S0029549321003071">https://www.sciencedirect.com/science/article/pii/S0029549321003071</a></p> <p> </p> <p>J. Yu, C. D. Blakely, J. D. Hales, and H. Zhang, “Accident tolerant fuel rod failure under low stress: A case study of BWR under station blackout using Bison,” Journal of Nuclear Materials, p. 153037, 2021. Online at <a href="https://www.sciencedirect.com/science/article/pii/S0022311521002609">https://www.sciencedirect.com/science/article/pii/S0022311521002609</a></p> <p> </p> <p>R. L. Williamson, J. D. Hales, S. R. Novascone, G. Pastore, K. A. Gamble, B. W. Spencer, W. Jiang, S. A. Pitts, A. Casagranda, D. Schwen, A. X. Zabriskie, A. Toptan, R. Gardner, C. Matthews, W. Liu, and H. Chen, “BISON: A flexible code for advanced simulation of the performance of multiple nuclear fuel forms,” Nuclear Technology, vol. 207, no. 7, pp. 954–980, 2021. Online at <a href="https://doi.org/10.1080/00295450.2020.1836940">https://doi.org/10.1080/00295450.2020.1836940</a></p> <p> </p> <p>J. D. Hales, W. Jiang, A. Toptan, and K. A. Gamble, “Modeling fission product diffusion in TRISO fuel particles with BISON,” Journal of Nuclear Materials, vol. 548, p. 152840, 2021. Online at <a href="https://www.sciencedirect.com/science/article/pii/S0022311521000635"> https://www.sciencedirect.com/science/article/pii/S0022311521000635</a></p> <p> </p> <p>W. Jiang, J. D. Hales, B. W. Spencer, B. P. Collin, A. E. Slaughter, S. R. Novascone, A. Toptan, K. A. Gamble, and R. Gardner, “TRISO particle fuel performance and failure analysis with BISON,” Journal of Nuclear Materials, vol. 548, p. 152795, 2021. Online at <a href="http://www.sciencedirect.com/science/article/pii/S0022311521000180"> http://www.sciencedirect.com/science/article/pii/S0022311521000180</a></p> <p> </p> <p>A. Toptan, N. W. Porter, J. D. Hales, B. W. Spencer, M. Pilch, and R. L. Williamson, “Construction of a Code Verification Matrix for Heat Conduction With Finite Element Code Applications,” Journal of Verification, Validation and Uncertainty Quantification, vol. 5, no. 4, p. 041002, 12 2020. Online at <a href="https://asmedigitalcollection.asme.org/verification/article/5/4/041002/1090520/Construction-of-a-Code-Verification-Matrix-for">https://asmedigitalcollection.asme.org/verification/article/5/4/041002/1090520/Construction-of-a-Code-Verification-Matrix-for</a></p> <p> </p> <p>G. Pastore, K. A. Gamble, R. L. Williamson, S. R. Novascone, R. J. Gardner, and J. D. Hales, “Analysis of fuel rod behavior during loss-of-coolant accidents using the BISON code: Fuel modeling developments and simulation of integral experiments,” Journal of Nuclear Materials, vol. 545, p. 152645, 2021. Online at <a href="https://www.sciencedirect.com/science/article/pii/S0022311520312538">https://www.sciencedirect.com/science/article/pii/S0022311520312538</a></p> <p> </p> <p>G. Pastore, R. L. Williamson, R. J. Gardner, S. R. Novascone, J. B. Tompkins, K. A. Gamble, and J. D. Hales, “Analysis of fuel rod behavior during loss-of-coolant accidents using the BISON code: Cladding modeling developments and simulation of separate-effects experiments,” Journal of Nuclear Materials, vol. 543, p. 152537, 2021. Online at <a href="https://www.sciencedirect.com/science/article/pii/S0022311520311454">https://www.sciencedirect.com/science/article/pii/S0022311520311454</a></p> <p> </p> <p>S. Biswas, D. Schwen, and J. D. Hales, “Development of a finite element based strain periodicity implementation method,” Finite Elements in Analysis and Design, vol. 179, p. 103436, 2020. Online at <a href="http://www.sciencedirect.com/science/article/pii/S0168874X20301165">http://www.sciencedirect.com/science/article/pii/S0168874X20301165</a></p> <p> </p> <p>S. Stimpson, K. Clarno, R. Pawlowski, R. Gardner, ​​J. Powers, B. Collins, A. Toth, S. Novascone, S. Pitts, J. Hales, and G. Pastore, “Coupled fuel performance calculations in VERA and demonstration on Watts Bar unit 1, cycle 1,” Annals of Nuclear Energy, vol. 145, p. 107554, 2020. Online at <a href="http://www.sciencedirect.com/science/article/pii/S0306454920302528">http://www.sciencedirect.com/science/article/pii/S0306454920302528​</a></p>​ <p> </p> <p>​A. Toptan, J. D. Hales, R. L. Williamson, S. R. Novascone, G. Pastore, and D. J. Kropaczek, “Modeling of gap conductance for LWR fuel rods applied in the BISON code,” ​Journal of Nuclear Science and Technology, 2020. Online at <a href="https://doi.org/10.1080/00223131.2020.1740808">https://doi.org/10.1080/00223131.2020.1740808</a></p> <p> </p> <p>T. Barani, G. Pastore, D. Pizzocri, D. Andersson, C. Matthews, A. Alfonsi, K. Gamble, P. V. Uffelen, L. Luzzi, and J. Hales, “Multiscale modeling of fission gas behavior in u3si2 under lwr conditions,” Journal of Nuclear Materials, vol. 522, pp. 97 – 110, 2019. Online at <a href="http://www.sciencedirect.com/science/article/pii/S0022311519301151">http://www.sciencedirect.com/science/article/pii/S0022311519301151</a></p> <p> </p> <p>P. V. Uffelen, J. Hales, W. Li, G. Rossiter, and R. Williamson, “A review of fuel performance modelling,” Journal of Nuclear Materials, vol. 516, pp. 373 – 412, 2019. Online at <a href="http://www.sciencedirect.com/%20science/article/pii/S0022311518310298">http://www.sciencedirect.com/ science/article/pii/S0022311518310298</a></p> <p> </p> <p>T. Barani, D. Pizzocri, G. Pastore, L. Luzzi, and J. Hales, “Isotropic softening model for fuel cracking in BISON,” Nuclear Engineering and Design, vol. 342​, pp. 257 – 263, 2019. Online at <a href="http://www.sciencedirect.com/science/article/pii/S0029549318310173">http://www.sciencedirect.com/science/article/pii/S0029549318310173</a></p> <p> </p> <p>Y. Che, G. Pastore, J. Hales, and K. Shirvan, “Modeling of Cr2O3-doped UO2 as a near-term accident tolerant fuel for LWRs using the BISON code,” Nuclear Engineering and Design, vol. 337, pp. 271 – 278, 2018. Online at <a href="http://www.sciencedirect.com/science/article/pii/S002954931830102X">http://www.sciencedirect.com/science/article/pii/S002954931830102X</a></p> <p> ​<br></p> <p>M. Wagih, B. Spencer, J. Hales, and K. Shirvan, “Fuel performance of chromium-coated zirconium alloy and silicon carbide accident tolerant fuel claddings,” Annals of Nuclear Energy, vol. 120, pp. 304 – 318, 2018. ​Online at <a href="https://www.sciencedirect.com/science/article/pii/S0306454918303037">https://www.sciencedirect.com/science/article/pii/S0306454918303037</a></p> <p> </p> <p>S. Novascone, P. Medvedev, J. W. Peterson, Y. Zhang, and J. Hales, “Modeling porosity migration ​in LWR and fast reactor MOX fuel using the finite element method,” Journal of Nuclear Materials, vol. 508, pp. 226 – 236, 2018. Online at <a href="http://www.sciencedirect.com/science/article/pii/S0022311518302861">http://www.sciencedirect.com/science/article/pii/S0022311518302861</a>​<br></p> <p> </p> <p>​D. Pizzocri, G. Pastore, T. Barani, A. Magni, L. Luzzi, P. V. Uffelen, S. Pitts, A. Alfonsi, and J. Hales, “A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering ​tools,” Journal of Nuclear Materials, 2018. Online at <a href="http://www.sciencedirect.com/science/article/pii/S0022311517315039">http://www.sciencedirect.com/science/article/pii/S0022311517315039</a></p> <p> </p> <p>K. A. Gamble, T. Barani, D. Pizzocri, J. D. Hales, K. A. Terrani, and G. Pastore, “An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions,” Journal of Nuclear Materials, vol. 491, pp. 55–66, 2017. Online at <a href="http://www.sciencedirect.com/science/article/pii/S0022311516312740">http://www.sciencedirect.com/science/article/pii/S0022311516312740</a></p> <p> </p> <p>B. W. Spencer, R. L. Williamson, D. S. Stafford, S. R. Novascone, J. D. Hales, and G. Pastore, “3D modeling of missing pellet surface defects in BWR fuel,” Nuclear Engineering and Design, vol. 307, pp. 155–171, 2016. Online at <a href="http://www.sciencedirect.com/science/article/pii/S0029549316302187">http://www.sciencedirect.com/science/article/pii/S0029549316302187</a></p> <p> </p> <p>R. L. Williamson, K. A. Gamble, D. M. Perez, S. R. Novascone, G. Pastore, R. J. Gardner, J. D. Hales, W. Liu, and A. Mai, “Validating the BISON fuel performance code to integral LWR experiments,” Nuclear Engineering and Design, vol. 301, pp. 232–244, 2016. Online at <a href="http://www.sciencedirect.com/science/article/pii/S0029549316000789">http://www.sciencedirect.com/science/article/pii/S0029549316000789</a></p> <p> </p> <p>X.-M. Bai, M. R. Tonks, Y. Zhang, and J. D. Hales, “Multiscale modeling of thermal conductivity of high burnup structures in UO2 fuels,” Journal of Nuclear Materials, vol. 470, pp. 208–215, 2016. Online at <a href="http://www.sciencedirect.com/science/article/pii/S0022311515303974">http://www.sciencedirect.com/science/article/pii/S0022311515303974</a></p> <p> </p> <p>S. R. Novascone, B. W. Spencer, J. D. Hales, and R. L. Williamson, “Evaluation of coupling approaches for thermomechanical simulations,” Nuclear Engineering and Design, vol. 295, pp. 910–921, 2015. Online at <a href="http://www.sciencedirect.com/science/article/pii/S0029549315002757">http://www.sciencedirect.com/science/article/pii/S0029549315002757</a></p> <p> </p> <p>X. Wu, T. Kozlowski, and J. D. Hales, “Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions,” Annals of Nuclear Energy, vol. 85, pp. 763–775, November 2015. Online at <a href="http://www.sciencedirect.com/science/article/pii/S0306454915003461">http://www.sciencedirect.com/science/article/pii/S0306454915003461</a></p> <p> </p> <p>J. D. Hales, M. R. Tonks, K. Chockalingam, D. M. Perez, S. R. Novascone, B. W. Spencer, and R. L. Williamson, “Asymptotic expansion homogenization for multiscale nuclear fuel analysis,” Computational Materials Science, vol. 99, pp. 290–297, March 2015. Online at <a href="http://dx.doi.org/10.1016/j.commatsci.2014.12.039">http://dx.doi.org/10.1016/j.commatsci.2014.12.039</a></p> <p> </p> <p>G. Pastore, L. P. Swiler, J. D. Hales, S. R. Novascone, D. M. Perez, B. W. Spencer, L. Luzzi, P. Van Uffelen, and R. L. Williamson, “Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling,” Journal of Nuclear Materials, vol. 456, pp. 398–408, 2015. Online at <a href="http://www.sciencedirect.com/science/article/pii/S0022311514006771">http://www.sciencedirect.com/science/article/pii/S0022311514006771</a></p> <p> </p> <p>J. D. Hales, M. R. Tonks, F. N. Gleicher, B. W. Spencer, S. R. Novascone, R. L. Williamson, G. Pastore, and D. M. Perez, “Advanced multiphysics coupling for LWR fuel performance analysis,” Ann. Nuclear Energy, vol. 84, pp. 98–110, October 2014. Online at <a href="http://dx.doi.org/10.1016/j.anucene.2014.11.003">http://dx.doi.org/10.1016/j.anucene.2014.11.003</a></p> <p> </p> <p>H. Huang, B. Spencer, and J. Hales, “Discrete element method for simulation of early-life thermal fracturing behavior in ceramic nuclear fuel pellets,” Nuclear Engineering and Design, vol. 278, pp. 515 – 528, 2014. Online at <a href="http://www.sciencedirect.com/science/article/pii/S0029549314004440">http://www.sciencedirect.com/science/article/pii/S0029549314004440</a></p> <p> </p> <p>O. Courty, A. T. Motta, and J. D. Hales, “Modeling and simulation of hydrogen behavior in Zircaloy-4 fuel cladding,” J. Nucl. Mater., vol. 452, pp. 311–320, 2014. Online at ​<a href="http://dx.doi.org/10.1016/j.jnucmat.2014.05.013">http://dx.doi.org/10.1016/j.jnucmat.2014.05.013</a></p> <p> </p> <p>J. D. Hales, S. R. Novascone, B. W. Spencer, R. L. Williamson, G. Pastore, and D. M. Perez, “Verification of the BISON fuel performance code,” Ann. Nuclear Energy, vol. 71, pp. 81–90, September 2014. Online at <a href="http://dx.doi.org/10.1016/j.anucene.2014.03.027">http://dx.doi.org/10.1016/j.anucene.2014.03.027</a></p> <p> </p> <p>J. D. Hales, R. L. Williamson, S. R. Novascone, D. M. Perez, B. W. Spencer, and G. Pastore, “Multidimensional multiphysics simulation of TRISO particle fuel,” J. Nucl. Mater., vol. 443, pp.531–543, November 2013. Online at <a href="http://dx.doi.org/10.1016/j.jnucmat.2013.07.070">http://dx.doi.org/10.1016/j.jnucmat.2013.07.070</a></p> <p> </p> <p>K. Chockalingam, M. R. Tonks, J. D. Hales, D. R. Gaston, P. C. Millett, and L. Zhang, “Crystal plasticity with Jacobian-free Newton–Krylov,” Computational Mechanics, vol. 51, pp. 1–11, 2013. Online at <a href="http://dx.doi.org/10.1007/s00466-012-0741-7">http://dx.doi.org/10.1007/s00466-012-0741-7</a></p> <p>R. L. Williamson, J. D. Hales, S. R. Novascone, M. R. Tonks, D. R. Gaston, C. J. Permann, D. Andrs, and R. C. Martineau, “Multidimensional multiphysics simulation of nuclear fuel behavior,” J. Nucl. Mater., vol. 423, pp. 149–163, 2012. Online at <a href="http://dx.doi.org/10.1016/j.jnucmat.2012.01.012">http://dx.doi.org/10.1016/j.jnucmat.2012.01.012</a></p> <p> </p> <p>J. D. Hales, S. R. Novascone, R. L. Williamson, D. R. Gaston, and M. R. Tonks, “Solving nonlinear solid mechanics problems with the Jacobian-free Newton Krylov method,” CMES: Comput. Model. Eng. Sci., vol. 84, no. 2, pp. 123–154, 2012. Online at <a href="http://dx.doi.org/10.3970/cmes.2012.084.123">http://dx.doi.org/10.3970/cmes.2012.084.123</a></p> </span></div></div>Computational mechanicshttps://bios.inl.gov/BioPhotos/JasonHales.jpg<div class="ExternalClassBC466F167E974FDFBD421C4D5247C668"><p><a href="https://scholar.google.com/citations?user=1el-L04AAAAJ&hl=en">https://scholar.google.com/citations?user=1el-L04AAAAJ&hl=en</a><br></p><p><a href="https://www.linkedin.com/in/jason-d-hales/">https://www.linkedin.com/in/jason-d-hales/</a><br></p><p><br></p></div>Department ManagerHalesJason
Stephen Novascone, Ph.D.https://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=53Stephen Novascone, Ph.D.Stephen Novascone is a computational scientist at Idaho National Laboratory (INL), with a background/education in mechanical engineering. After finishing his Master of Science degree in Mechanical Engineering at Utah State University in 1998, he had a brief stint at Thiokol, analyzing rocket motors. Raised in Idaho and wanting to return, he seized an opportunity to work at the Idaho National Engineering and Environmental Laboratory in 1999. Since then, he has spent most of his 20+ year career at INL working on a variety of engineering projects, including research on geo-material sensors, which was the topic of his dissertation at the University of Idaho (Ph.D. 2003). Since 2010, he has worked as a developer of Bison, INL’s state-of-the-art nuclear fuel performance code. His role on the Bison team is to develop light water reactor, fast mixed oxide and metallic fuel simulation capability and evaluate the code against experimental measurements. While working on Bison, Stephen has authored/co-authored many peer-reviewed archival journal articles and delivered numerous presentations at national and international forums. According to Google Scholar, these publications have a citation count of > 800. Other notable achievements include patents for geo-material sensors and material testing apparatus for armor systems.https://bios.inl.gov/BioPhotos/Stephen%20Novascone.JPGMechanical EngineerNovasconeStephen
Benjamin Spencer, Ph.D.https://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=50Benjamin Spencer, Ph.D. Benjamin Spencer brings his computational solid mechanics expertise to the Bison development effort. He has broad experience developing and applying computational methods for fracture, contact, constitutive modeling, and structural dynamics in massively parallel computing environments. Prior to coming to INL in 2011, he worked at Sandia National Laboratories, where he developed implicit and explicit solid mechanics codes and simulated nuclear safety-related structures subjected to a variety of natural and man-made insults. He received his Ph.D. in Civil Engineering from the University of Colorado at Boulder in 2002. <div class="ExternalClass42C7E998BE50419D9487CE4697DBDAC1"><p>​Ph.D., Civil Engineering - University of Colorado, Boulder</p><p>M.S., Civil Engineering - University of Colorado, Boulder</p><p>B.S., Civil Engineering - BrighamYoung University</p></div><div class="ExternalClassAFCC173A37424B8A9D7C412E6ECC5776"><p>​Y. Hu, H. Chen, B.W. Spencer, and E. Madenci, “Thermomechanical Peridynamic Analysis with Irregular Non-Uniform Domain Discretization”, Engineering Fracture Mechanics Feb. 2018.</p><p> </p><p>Z. Zhang, W. Jiang, J. E. Dolbow, and B.W. Spencer, “A modified moment-fitted integration scheme for X-FEM applications with history-dependent material data”, Computational Mechanics Jan. 2018.</p><p> </p><p>X.-M. Bai, H. Ke, Y. Zhang, and B.W. Spencer, “Modeling copper precipitation hardening and embrittlement in a dilute Fe-0.3at.%Cu alloy under neutron irradiation”, Journal of Nuclear Materials, vol. 495, pp. 442–454, Nov. 2017.</p><p><br>B.W. Spencer, R. L. Williamson, D. S. Stafford, S. R. Novascone, J.D. Hales, and G. Pastore, “3D modeling of missing pellet surface defects in BWR fuel”, Nuclear Engineering and Design, vol. 307, pp. 155–171, Oct. 2016.</p><p><br>J.D. Hales, M. R. Tonks, F. N. Gleicher, B.W. Spencer, S. R. Novascone, R. L. Williamson, G. Pastore, and D. M. Perez, “Advanced multiphysics coupling for LWR fuel performance analysis”, Annals of Nuclear Energy, vol. 84, pp. 98–110, Oct. 2015.</p><p><br>S. R. Novascone, B.W. Spencer, J.D. Hales, and R. L. Williamson, “Evaluation of coupling approaches for thermomechanical simulations”, Nuclear Engineering and Design, vol. 295, pp. 910–921, Aug. 2015.</p><p><br>J.D. Hales, M. R. Tonks, K. Chockalingam, D. M. Perez, S. R. Novascone, B.W. Spencer, and R. L. Williamson, “Asymptotic expansion homogenization for multiscale nuclear fuel analysis”, Computational Materials Science, vol. 99, pp. 290–297, Mar. 2015.</p><p><br>G. Pastore, L. P. Swiler, J.D. Hales, S. R. Novascone, D. M. Perez, B.W. Spencer, L. Luzzi, P. Van Uffelen, and R. L. Williamson, “Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling”, Journal of Nuclear Materials, vol. 456, pp. 398–408, Jan. 2015.</p><p> </p><p>H. Huang, B. Spencer, and J. Hales, “Discrete element method for simulation of early-life thermal fracturing behavior in ceramic nuclear fuel pellets”, Nuclear Engineering and Design, vol. 278, pp. 515–528, Oct. 2014.</p><p> </p><p>J.D. Hales, S. R. Novascone, B.W. Spencer, R. L. Williamson, G. Pastore, and D. M. Perez, “Verification of the BISON fuel performance code”, Annals of Nuclear Energy, vol. 71, pp. 81–90, Sept. 2014.</p><p> </p><p>G. J. de Fr´ıas, W. Aquino, K. H. Pierson, M.W. Heinstein, and B.W. Spencer, “A multiscale mass scaling approach for explicit time integration using proper orthogonal decomposition”, International Journal for Numerical Methods in Engineering, vol. 97, no. 11, pp. 799–818, Mar. 2014.</p><p> </p><p>J.D. Hales, R. L. Williamson, S. R. Novascone, D. M. Perez, B.W. Spencer, and G. Pastore, “Multidimensional multiphysics simulation of TRISO particle fuel”, Journal of Nuclear Materials, vol. 443, pp. 531–543, 2013.</p><p> </p><p>J. P. Petti, B.W. Spencer, and H. L. Graves, “Risk-informed assessment of degraded containment vessels”, Nuclear Engineering and Design, vol. 238, no. 8, pp. 2038–2047, Aug. 2008.</p><p> </p><p>B.W. Spencer and P.B. Shing, “Rigid-plastic interface for an embedded crack”, International Journal For Numerical Methods In Engineering, vol. 56, pp. 2163–2182, 2003.</p></div>https://bios.inl.gov/BioPhotos/Benjamin%20Spencer.JPGTechnical StaffSpencerBenjamin
Kyle Gamblehttps://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=56Kyle Gamble Kyle Gamble is a computational mathematician/physicist in the Fuel Modeling and Simulation Department as a member of the BISON team. He started at INL in June 2014. Mr. Gamble obtained a B.Sc. in Engineering Physics from Queen's University in Kingston, Ontario, Canada (2012) and a M.A.Sc. in Nuclear Engineering from the Royal Military College of Canada (2014). His Master's research was in collaboration with Atomic Energy of Canada Limited Chalk River Laboratories examining the capabilities of MOOSE and Bison at modeling thermally and mechanically induced deformations of CANada Deuterium Uranium (CANDU) reactor fuel elements in three dimensions. Mr. Gamble's research interests include finite element contact, fuel performance, modeling and mutliphysics. <div class="ExternalClass80E10A28E18547888CBDFE9983951C61"><p>​M.S., Chemistry and Chemical Engineering - Royal Military College of Canada</p><p>B.S., Engineering Physics, Mechanical Engineering Option - Queen's University, Canada</p></div><div class="ExternalClass70AAEAA7984A43CDB463FE74B9BA8EE6"><p>​Professional Engineers of Ontario</p><p>Canadian Nuclear Society</p><p>American Nuclear Society</p></div><div class="ExternalClassBC2A1FF8AA7E4E4F95023CCFDC82C8F1"><p><strong>​Refereed Journal Papers</strong><br>S. Stimpson, J. Powers, K. Clarno, R. Pawlowski, R. Gardner, S. Novascone, K. Gamble, R. Williamson, “Pellet-clad mechanical interaction screening using VERA applied to Watts Bar Unit 1, Cycles 1-3,” Journal of Nuclear Engineering and Design, 327 (2018), p. 172-186.</p><p><br>Y. Miao, K. A. Gamble, D. Andersson, Z-G Mei, A. M. Yacout, “Rate theory scenarios study on fission gas behavior of U3Si2 under LOCA conditions in LWRs,” Journal of Nuclear Engineering and Design, 326 (2018), p. 371-282.</p><p><br>Y. Miao, K. A. Gamble, D. Andersson, B. Ye, Z-G Mei, G. Hofman, A. M. Yacout, “Gaseous Swelling of U3Si2 during Steady-State LWR Operation: a Rate Theory Investigation,” Journal of Nuclear Engineering and Design, 322 (2017), p. 336-344.</p><p><br>K. A. Gamble, T. Barani, D. Pizzocri, J. D. Hales, K. A. Terrani, G. Pastore, “An investigation of FeCrAl cladding behaviour under normal operating and loss of coolant conditions,” Journal of Nuclear Materials, 491 (2017), p. 55-66.</p><p><br>R. L. Williamson, K. A. Gamble, D. M. Perez, S. R. Novascone, G. Pastore, R. J. Gardner, J. D. Hales, W. Liu, A. Mai, “Validating the BISON fuel performance code to integral LWR experiments,” Journal of Nuclear Engineering and Design, 301 (2016), p. 232-244.</p><p><br>K. A. Gamble, A. F. Williams, P. K. Chan, D. Wowk, “A feasibility study on the use of the MOOSE computational framework to simulate three-dimensional deformation of CANDU reactor fuel elements,” Journal of Nuclear Engineering and Design, 293 (2015), p. 385-394.</p><p><br>D. Wowk, K. Gamble, R. Underhill, "Influence of p-method finite element parameters on predictions of crack front geometry," Journal of Finite Element in Analysis and Design, 73 (2013),<br>p. 1-10.</p><p><br><strong>Conference Proceedings</strong><br>K. A. Gamble, J. D. Hales, G. Pastore, T. Barani, D. Pizzocri, K. A. Terrani, “Fuel Performance Modeling of FeCrAl Cladding Failure during Loss of Coolant Conditions,” Proceedings of the 2017 Water Reactor Fuel Performance Meeting, Jeju Island, South Korea<br>(September 2017).</p><p><br>K. A. Gamble, J. D. Hales, “Preliminary Modeling of Accident Tolerant Fuel Concepts under Accident Conditions, Proceedings of TopFuel 2016, Boise, USA (September 2016).</p><p><br>K. A. Gamble, L. P. Swiler, “Uncertainty Quantification and Sensitivity Analysis Applications to Fuel Performance Modeling,” Proceedings of TopFuel 2016, Boise, USA (September 2016).</p><p><br>K. A. Gamble, J. D. Hales, "Investigating Accident Tolerant Fuel Concepts using the BISON Fuel Performance Code," Proceedings of the Nuclear Fuels and Structural Materials Embedded Topical – ANS Annual Meeting, New Orleans, LA, USA (June 2016).</p><p><br>J. D. Hales, K. A. Gamble, "Preliminary evaluation of FeCrAl cladding and U-Si fuel for accident tolerant fuel concepts," Proceedings of TopFuel 2015, Zurich, Switzerland (September 2015).</p><p><br>K. A. Gamble, "Overview of the BISON Fuel Performance Code," Proceedings of the ANS<br>Annual Meeting, San Antonio, TX, USA (June 2015).</p><p><br>K. A. Gamble, A.F. Williams, P.K. Chan, "Development of a Three-Dimensional Thermo-Mechanical Deformation Model of a Horizontal Nuclear Fuel Element," Proceedings of the 19th Pacific Basin Nuclear Conference, Vancouver, BC, Canada (August 2014).</p><p><br>K. Gamble, A.F. Williams, P.K. Chan, "A Three-Dimensional Analysis of the Stresses and Strains at the Pellet Ridges in a Horizontal Nuclear Fuel Element," Proceedings of the 22nd International Conference on Nuclear Engineering, Prague, Czech Republic (July 2014).</p><p><br>K. Gamble, A.F. Williams, P.K. Chan, "Feasibility Study of Modeling a CANDU Fuel Element using a Multiphysics Object-Oriented Simulation Environment," Proceedings of the 12th International Conference on CANDU Fuel, Kingston, ON, Canada (September 2013).</p><p><br>K. Gamble, A.F. Williams, P.K. Chan, "Advanced Finite Element Modeling of a Horizontal Nuclear Fuel Element using a Multiphysics Object-Oriented Simulation Environment," 37th Annual CNS/CNA Student Conference, Toronto, ON, Canada (June 2013).</p><p><strong></strong> </p><p><strong>Technical Industry Documents</strong><br>K. A. Gamble, J. D. Hales, G. Pastore, T. Barani, D. Pizzocri, “Behavior of U3Si2 Fuel and FeCrAl Cladding under Normal Operating and Accident Reactor Conditions, Technical Report, Idaho National Laboratory, INL/EXT-16-40059 (September 2016).</p><p><br>J. D. Hales, R. L. Williamson, S. R. Novascone, G. Pastore, B. W. Spencer, D. S. Stafford, K. A. Gamble, D. M. Perez, W. Liu, "BISON Theory Manual: The Equations Behind Nuclear Fuel Analysis, BISON Release 1.2," Technical Report, Idaho National Laboratory, INL/MIS-13-29930 Rev. 3 (September 2015).</p><p><br>J. D. Hales, K. A. Gamble, B. W. Spencer, S. R. Novascone, G. Pastore, W. Liu, D. S. Stafford, R. L. Williamson, D. M. Perez, R. J. Gardner, "BISON Users Manual, BISON Release 1.2," Technical Report, Idaho National Laboratory, INL/MIS-13-30307 Rev. 3<br>(September 2015).</p><p><br>K. A. Gamble, J. D. Hales, J. Yu, Y. Zhang, X. Bai, D. Andersson, A. Patra, W. Wen, C. Tomé, M. Baskes, E. Martinez, C. R. Stanek, Y. Miao, B. Ye, G. L. Hofman, A. M. Yacout, W. Liu, "Multiscale Multiphysics Developments for Accident Tolerant Fuel Concepts,"<br>Technical Report, Idaho National Laboratory, INL/EXT-15-36761 (September 2015).</p><p><br>K. Gamble, R. Williamson, D. Schwen, Y. Zhang, S. Novascone, P. Medvedev, "BISON and MARMOT Development for Modeling Fast Reactor Fuel Performance," Technical Report, Idaho National Laboratory, INL/EXT-15-36440 (September 2015).</p><p><br>M.H.A. Piro, J.J. Bashcuk, K. Gamble, B.W. Leitch, A.F. Williams, "Multi-Physics Software Comparison Between ANSYS and MOOSE/BISON/MARMOT," AECL Memo, Chalk River, ON, Canada, F&FCSB-13-060 (December 2013).</p></div>https://bios.inl.gov/BioPhotos/Kyle%20Gamble.JPGComputational Mathematician/PhysicistGambleKyle
Stephanie Pittshttps://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=794Stephanie PittsStephanie Pitts is a computational scientist with the Computational Mechanics and Materials Department at INL. She has degrees in mechanical engineering from Washington State University (B.S. 2009, Ph.D. 2019), with a Nuclear Energy University Programs Fellowship awarded in 2010. Her research interests include modeling the mesoscale evolution of metallic microstructures in response to irradiation exposure and mechanical loading, and the connection of these models to engineering scale simulations. Since joining INL in 2015, originally as an intern, she has been a member of the Bison code development team.<div class="ExternalClassFFB013335AA7458F95AF43285E65E9B9"><p>B.S. in Mechanical Engineering from Washington State University <br></p><p>Ph.D. in Mechanical Engineering from Washington State University <br></p></div>Modeling and Simulationhttps://bios.inl.gov/BioPhotos/Stephanie-Pitts_P-10354-1.pngComputational ScientistPittsStephanie
Adam Zabriskiehttps://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=795Adam Zabriskie Adam Zabriskie is a computational scientist in with the Computational Mechanics and Materials Department at INL. He has degrees in mechanical engineering from Utah State University (B.S. 2009, M.S. 2012) and in nuclear engineering from Oregon State University (Ph.D. 2019). His research focus has mainly revolved around computational applications with a nuclear emphasis. Research topics have included a computational fluid dynamics (CFD) simulation of an ATR specimen basket and transient reactor pulse simulations with coupled multiphysics and multiscale feedback. Since joining INL as an intern in 2015, he has implemented metallic fuel related capabilities in Bison. https://bios.inl.gov/BioPhotos/AdamZabriskie.jpgComputational ScientistZabriskieAdam
Wen Jiang, Ph.D.https://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=327Wen Jiang, Ph.D.Dr. Wen Jiang is a computational scientist with the Computational Mechanics and Materials Department at INL. He received his Ph.D. in Mechanical Engineering and Materials Science from Duke University in 2015. After Ph.D., he joined INL and worked in the area of computational mechanics and materials. His research focuses on developing of numerical methods for applied mechanics problems, with a particular emphasis on the important role played by interfaces and fractures. <div class="ExternalClassEC2C62C60EBE467483EF786F52B6D3DA"><p>​<span style="line-height:107%;font-family:calibri, sans-serif;font-size:12pt;"><font color="#000000">Ph.D., Mechanical Engineering and Material Science - Duke University</font></span><span style="line-height:107%;font-family:calibri, sans-serif;font-size:12pt;"><br><font color="#000000"> </font></span><span style="line-height:107%;font-family:calibri, sans-serif;font-size:12pt;"><font color="#000000">M.S., Solid Mechanics - Beijing University of Aeronautics and Astronautics</font></span><span style="line-height:107%;font-family:calibri, sans-serif;font-size:12pt;"><br><font color="#000000"> </font></span><span style="line-height:107%;font-family:calibri, sans-serif;font-size:12pt;"><font color="#000000">B.S., Aircraft Design - Beijing University of Aeronautics and Astronautics</font></span></p></div><div class="ExternalClassEB79F50B7B0F4582B1C3A4F19E73B7C3"><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;"><strong>W. Jiang</strong>, B.W. Spencer, J.E. Dolbow, “Ceramic nuclear fuel fracture modeling with the extended finite element method”, <em>Engineering Fracture Mechanics</em>, accepted, 2020.<br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;"><br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;"><strong>W. Jiang</strong>, TC Hu, L.K. Aagesen, YF Zhang, “Three-dimensional phase-field modeling of porosity dependent intergranular fracture in UO<sub>2</sub>”, <em>Computational Materials Science</em>, 171, 109269, 2020<br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;"><br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;">S. Zhang, <strong>W. Jiang</strong>, M.R. Tonks, “A new phase field fracture model for brittle materials that accounts for elastic anisotropy”, <em>Computer Methods in Applied Mechanics and Engineering</em>, 358, 112643, 2020<br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;"><br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;">T.-Y. Kim, <strong>W. Jiang</strong>, S. Lee et al., A Nitsche-type variational formulation for the shape deformation of a single component vesicle, <em>Computer Methods in Applied Mechanics and Engineering</em>, 112661, 2019<br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;"><br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;">A Beel, TY Kim, <strong>W. Jiang</strong>, JH Song, “Strong form-based meshfree collocation method for wind-driven ocean circulation”, <em>Computer Methods in Applied Mechanics and Engineering, </em><strong>351</strong>, 404-421, 2019</p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;"><br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;line-height:15pt;">P Chakraborty, <strong>W Jiang</strong>, “Crystal plasticity-based creep model for solution-strengthened nickel-based alloys”, <em>International Journal of Materials and Structural Integrity</em>, 13(1-3), 144-159, 2019 <strong></strong></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;line-height:15pt;"><br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;">Z. Zhang, <strong>W.Jiang</strong>, J. Dolbow, B. Spencer, “A modified moment-fitted integration scheme for X-FEM applications with history dependent material data”, <em>Computational Mechanics</em>, 1-20, 2018<br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;"><br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;">I. Balushi, <strong>W. Jiang</strong>, G. Tsogtgerel and TY. Kim, “Adaptivity of a B-spline based finite-element method for modeling wind-driven ocean circulation”, <em>Computer Methods in Applied Mechanics and Engineering</em>, 332, 1-24, 2018<br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;"><br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;">E. Rotundo, T. Kim, <strong>W.Jiang</strong>, L.Heltai and E.Fried, “Error estimates of B-spline based finite element method for the wind-driven ocean circulation”, <em>Journal of Scientific Computing</em>, 69, 430-459, 2016<br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;"><br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;"><strong>W. Jiang</strong>, T. Kim, “Spline-based finite-element method for the stationary quasi-geostrophic equations on arbitrary shaped coastal boundaries”, <em>Computer Methods in Applied Mechanics and Engineering, </em>299, 144-160, 2016<br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;"><br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;"><strong>W. Jiang</strong> & J. Dolbow, “Adaptive refinement of the hierarchical b-spline finite element method and data transfer scheme”, <em>International Journal for Numerical Methods in Engineering</em>, 102(3-4), 233-256, 2015<br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;"><br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;"><strong>W. Jiang</strong>, C. Annavarapu, I. Harari & J. Dolbow, “A robust Nitsche’s formulation for interface problems with spline-based finite elements”, <em>International Journal for Numerical Methods in Engineering, </em>104(7), 676-696, 2015<br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;"><br></p><p style="color:#201f1e;background-color:#ffffff;font-size:11pt;font-family:calibri, sans-serif;margin-bottom:0px;"><strong>W. Jiang</strong> & J.L. Yang, “Energy-absorption behavior of a metallic double-sine-wave beam under axial crushing”, <em>Thin-Walled Structures</em>, 47(11), 1168-1176, 2009<br></p><p><br></p></div>Computational mechanics;Mathematical modeling;Numerical simulationshttps://bios.inl.gov/BioPhotos/Wen%20Jiang.jpgComputational ScientistJiangWen
Antonio Recuerohttps://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=873Antonio Recuero Antonio Recuero is a computational mechanics scientist in the Computational Mechanics and Materials Department, with experience in finite elements, nonlinear mechanics and materials, multibody dynamics, and model development. His interests also include high-performance computing, numerical methods, and general innovative methodologies on the application of computational mechanics to engineering problems. Dr. Recuero earned a Ph.D. in Industrial Engineering from the University of Seville, Spain, and has held the positions of scientist and senior simulation engineer at the University of Wisconsin-Madison and The Goodyear Tire & Rubber company, respectively. He joined INL in 2019, where he has contributed to several physics-based codes including Bison, Magpie, and MOOSE. <div class="ExternalClass270FBBC4545B4A4F95D77A3EC4462B44"><p>Ph.D., Industrial Engineering – University of Seville, Spain </p><p>M.S., Advanced Design in Mechanical Engineering – University of Seville, Spain <br></p><p>B.S., Industrial Engineering – University of Seville, Spain <br></p><p>B.S., Technical Industrial Degree in Mechanical Engineering – University of Huelva, Spain <br></p></div><div class="ExternalClassA2DC402F66814D6C9AE66E7F38B55F1D"><p>​Recuero, AM; Escalona, JL; Shabana, AA; "Finite-element analysis of unsupported sleepers using three-dimensional wheel–rail contact formulation,” Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics",225,2,153-165,2011,"SAGE Publications Sage UK: London, England </p><p>Escalona, José L; Chamorro, Rosario; Recuero, Antonio M; “Description of methods for the eigenvalue analysis of railroad vehicles including track flexibility, Journal of computational and nonlinear dynamics,7,4, 2012, American Society of Mechanical Engineers Digital Collection </p><p>Hamper, Martin B; Recuero, Antonio M; Escalona, José L; Shabana, Ahmed A, “Use of finite element and finite segment methods in modeling rail flexibility: a comparative study,” Journal of computational and nonlinear dynamics, 7, 4, 2012, American Society of Mechanical Engineers Digital Collection <br></p><p>Escalona, José L; Recuero, Antonio M; “A bicycle model for education in multibody dynamics and real-time interactive simulation,” Multibody System Dynamics, 27, 3, 383-402, 2012, Springer Netherlands <br></p><p>Shabana, Ahmed A; Zaher, Mohamed H; Recuero, Antonio M; Rathod, Cheta; “Study of nonlinear system stability using eigenvalue analysis: Gyroscopic motion,” Journal of sound and vibration, 330, 24, 6006-6022, 2011, Academic Press <br></p><p>Recuero, Antonio M; Escalona, José L; “Application of the trajectory coordinate system and the moving modes method approach to railroad dynamics using Krylov subspaces,” Journal of Sound and Vibration, 332, 20, 5177-5191, 2013, Academic Press <br></p><p>Recuero, Antonio M; Escalona, José L; “Dynamics of the coupled railway vehicle–flexible track system with irregularities using a multibody approach with moving modes,” Vehicle System Dynamics, 52,1,45-67, 2014,Taylor & Francis <br></p><p>Chamorro, Rosario; Escalona, José L; Recuero, Antonio M; “Stability analysis of multibody systems with long flexible bodies using the moving modes method and its application to railroad dynamics,” Journal of Computational and Nonlinear Dynamics, 9,1 2014, American Society of Mechanical Engineers Digital Collection <br></p><p>Ding, Jieyu; Wallin, Michael; Wei, Cheng; Recuero, Antonio M; Shabana, Ahmed A; “Use of independent rotation field in the large displacement analysis of beams” Nonlinear Dynamics, 76, 3, 1829-1843, 2014, Springer Netherlands <br></p><p>Hamed, Ashraf M; Jayakumar, Paramsothy; Letherwood, Michael D; Gorsich, David J; Recuero, Antonio M; Shabana, Ahmed A; “Ideal compliant joints and integration of computer aided design and analysis” Journal of Computational and Nonlinear Dynamics,10, 2, 2015, American Society of Mechanical Engineers Digital Collection <br></p><p>Recuero, Antonio M; Shabana, Ahmed A; “A simple procedure for the solution of three-dimensional wheel/rail conformal contact problem” Journal of Computational and Nonlinear Dynamics, 9, 3, 2014, American Society of Mechanical Engineers Digital Collection <br></p><p>Recuero, A.M.; Escalona, J.L.; Chamorro, R.; “A Trajectory Frame-Based Dynamic Formulation for Railroad Vehicle Simulation” International Journal of Railway Technology,1, 2, 21-44, 2012 <br></p><p>Ding, Jieyu; Wallin, Michael; Wei, Cheng; Recuero, Antonio M; Shabana, Ahmed A; “On the Issue of Redundancy in the Large Rotation Vector Formulation” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,46391, V006T10A031, 2014, American Society of Mechanical Engineers <br></p><p>Recuero, Antonio M; Aceituno, Javier F; Escalona, José L; Shabana, Ahmed A; “A nonlinear approach for modeling rail flexibility using the absolute nodal coordinate formulation, Nonlinear Dynamics” 83,1-2, 463-481, 2016, Springer Netherlands <br></p><p>Recuero, Antonio M; Contreras, Ulysses; Patel, Mohil; Shabana, Ahmed A; “ANCF continuum-based soil plasticity for wheeled vehicle off-road mobility” Journal of Computational and Nonlinear Dynamics,11, 4, 2016, American Society of Mechanical Engineers Digital Collection <br></p><p>Recuero, Antonio M; Escalona, Jose L; “Analytical and Numerical Validation of a Moving Modes Method for Traveling Interaction on Long Structures,” Journal of Computational and Nonlinear Dynamics,11, 5, 2016, American Society of Mechanical Engineers Digital Collection <br></p><p>Contreras, Ulysses; Recuero, Antonio M; Jayakumar, Paramsothy; Foster, Craig D; Letherwood, Michael D; Gorsich, David J; Shabana, Ahmed A; “Integration of ANCF continuum-based soil plasticity for off-road vehicle mobility in multibody system dynamics,” International Journal of Vehicle Performance, 3,1, 36-70, 2017, Inderscience Publishers (IEL) <br></p><p>Recuero, Antonio; Serban, Radu; Peterson, Bryan; Sugiyama, Hiroyuki; Jayakumar, Paramsothy; Negrut, Dan; “A high-fidelity approach for vehicle mobility simulation: Nonlinear finite element tires operating on granular material,” Journal of Terramechanics, 72, 39-54, 2017, Pergamon <br></p><p>Serban, Radu; Negrut, Dan; Recuero, Antonio; Jayakumar, Paramsothy; “An integrated framework for high-performance, high-fidelity simulation of ground vehicle-tyre-terrain interaction,” International journal of vehicle performance, 5, 3, 233-259, 2019, Inderscience Publishers (IEL) <br></p><p>Rakhsha, Milad; Smith, Colin R; Recuero, Antonio M; Brandon, Scott CE; Vignos, Michael F; Thelen, Darryl G; Negrut, Dan; “Simulation of surface strain in tibiofemoral cartilage during walking for the prediction of collagen fibre orientation,” Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 7, 4, 396-405, 2019, Taylor & Francis <br></p><p>Serban, Radu; Recuero, Antonio; “Sensitivity analysis for hybrid systems and systems with memory,” Journal of Computational and Nonlinear Dynamics,  14,9, 2019, American Society of Mechanical Engineers Digital Collection <br></p></div>https://bios.inl.gov/BioPhotos/AntonioR.jpg<div class="ExternalClassB63C03DE69FC4082B24B5A60EE19BA3B"><p><a href="https://scholar.google.com/citations?user=Rq09m7cAAAAJ&hl=en" target="_blank" rel="noreferrer noopener"><span data-contrast="none" lang="EN-US"><span data-ccp-charstyle="Hyperlink">https://scholar.google.com/citations?user=Rq09m7cAAAA</span></span><span data-contrast="none" lang="EN-US"><span data-ccp-charstyle="Hyperlink">J</span></span><span data-contrast="none" lang="EN-US"><span data-ccp-charstyle="Hyperlink">&hl=en</span></span></a></p><div><div><p><a href="https://www.linkedin.com/in/antonio-recuero/" target="_blank" rel="noreferrer noopener"><span data-contrast="none" lang="EN-US"><span data-ccp-charstyle="Hyperlink">https://www.linkedin.com/in/</span></span><span data-contrast="none" lang="EN-US"><span data-ccp-charstyle="Hyperlink">antonio-re</span></span><span data-contrast="none" lang="EN-US"><span data-ccp-charstyle="Hyperlink">c</span></span><span data-contrast="none" lang="EN-US"><span data-ccp-charstyle="Hyperlink">u</span></span><span data-contrast="none" lang="EN-US"><span data-ccp-charstyle="Hyperlink">e</span></span><span data-contrast="none" lang="EN-US"><span data-ccp-charstyle="Hyperlink">ro</span></span><span data-contrast="none" lang="EN-US"><span data-ccp-charstyle="Hyperlink">/</span></span></a><span data-contrast="none" lang="EN-US"></span><span data-ccp-props="{"335559685":1020}"> </span></p></div></div></div>RecueroAntonio
Gyanender Singh https://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=867Gyanender Singh Gyanender Singh is a modeling and simulation engineer in the Computational Mechanics and Materials department of Nuclear Science and Technology Directorate at INL. He specializes in determining the thermo-mechanical behavior of materials under complex physical conditions with the aim of predicting the performance of structures and components under operation and their design optimization. Besides, Dr. Singh holds significant experience in mechanical characterization of wide variety of materials including ceramic composites, monoliths, graphite and polyethylene. He has also experience in development of non-destructive techniques for mechanical characterization and manufacturing process modeling. Prior to joining INL, Dr. Singh conducted research at University of Tennessee and Oak Ridge National Laboratory focused on development of accident tolerant fuel cladding materials for advanced nuclear reactors. <div class="ExternalClassF112DB68CB3245A0BA7AC9485604E11E"><div>Ph.D., Mechanical Engineering, University of Minnesota – Twin Cities<br></div><div>M.S., Mechanical Engineering, University of Minnesota – Twin Cities</div><div>B.Tech., Production & Industrial Engineering, Indian Institute of Technology Roorkee</div><div><br><br></div><p><br></p></div><div class="ExternalClass6B908F2E2336481CAA392ADCDE54BE9D"><p>​Multiphysics modeling & simulation for design, analysis and process optimization, Nuclear materials, Advanced non-destructive characterization​<br></p></div><div class="ExternalClass04F4A674E7AC4A14B1EA0A4778D85504"><p style="text-align:justify;">G. Singh, J. Gorton, D. Schappel, B. S. Collins, N.R. Brown, B. Wirth and Y. Katoh<br></p><p style="text-align:justify;"><strong>Impact of Control Blade Insertion on the Deformation Behavior of SiC-SiC Channel Boxes in BWRs</strong></p><p style="text-align:justify;"><em>Nuclear Engineering and Design</em>, 363, 110621, 2020. (<a href="https://www.sciencedirect.com/science/article/pii/S0029549320301151"><em>link</em></a>)</p><p style="text-align:justify;"><br></p><p style="text-align:justify;">C. Ang, G. Singh, L. Snead, Y. Katoh<br></p><p style="text-align:justify;"><strong>Preliminary study of sintering zero-rupture Fully Ceramic Microencapsulated (FCM) fuel</strong></p><p style="text-align:justify;"><em>International Journal of Applied Ceramic Technology, 2019;00:1-9.</em> (<a href="https://ceramics.onlinelibrary.wiley.com/doi/full/10.1111/ijac.13294"><em>link</em></a>)</p><p style="text-align:justify;"><br></p><p style="text-align:justify;">G. Singh, T. Koyanagi, C. Petrie, K. Terrani and Y. Katoh</p><p style="text-align:justify;"><strong>Elastic Moduli Reduction in SiC-SiC Tubular Specimen after High Heat Neutron Flux Irradiation Measured by Resonant Ultrasound Spectroscopy</strong></p><p style="text-align:justify;"><em>Journal of Nuclear Material, 523, 391-401, 2019 (</em><a href="https://www.sciencedirect.com/science/article/pii/S0022311518316696"><em>link</em></a><em>).</em></p><p style="text-align:justify;"><em> </em></p><p style="text-align:justify;">M. N. Cinbiz, T. Koyanagi, G. Singh, Y. Katoh, K. Terrani and N.R. Brown</p><p style="text-align:justify;"><strong>Failure Behavior of SiC/SiC Composite Tubes Under Strain Rates Similar to the Pellet-Cladding Mechanical Interaction Phase of Reactivity-Initiated Accidents</strong> </p><p style="text-align:justify;"><em>Journal of Nuclear Materials, 514, 66-73, 2019 (</em><a href="https://www.sciencedirect.com/science/article/pii/S0022311518313187"><em>link</em></a><em>).</em></p><p style="text-align:justify;"><em> </em></p><p style="text-align:justify;">G. Singh, J. Gorton, D. Schappel, N.R. Brown, Y. Katoh, B. Wirth and K. Terrani </p><p style="text-align:justify;"><strong>Deformation Analysis of SiC-SiC Channel Box for BWR Applications</strong></p><p style="text-align:justify;"><em>Journal of Nuclear Materials, 513, 71-85, 2019 (</em><a href="https://www.sciencedirect.com/science/article/pii/S0022311518308304?dgcid=author"><em>link</em></a><em>).</em></p><p style="text-align:justify;"><em> </em></p><p style="text-align:justify;">C. M. Donahue, M. C. Remillieux, G. Singh, T. J. Ulrich, R. J. Migliori and T. A. Saleh</p><p style="text-align:justify;"><strong>Measuring the Elastic Tensor of a Monolithic SiC Hollow Cylinder with Resonant Ultrasound Spectroscopy</strong></p><p style="text-align:justify;"><em>NDT & E International, 101, 29-33, 2019 (</em><a href="https://www.sciencedirect.com/science/article/pii/S0963869518302032"><em>link</em></a><em>).</em></p><p style="text-align:justify;"><em> </em></p><p style="text-align:justify;">G. Singh, T. Koyanagi, C. Petrie, K. Terrani and Y. Katoh <strong>Evaluating the Irradiation Effects on the Elastic Properties of Miniature Monolithic SiC Tubular Specimens </strong><em>Journal of Nuclear Materials, 499, 107-110, 2018 (</em><a href="https://www.sciencedirect.com/science/article/pii/S0022311517311625"><em>link</em></a><em>). </em></p><p style="text-align:justify;"><em> </em></p><p style="text-align:justify;">G. Singh, S. Gonczy, C. Deck, E. Lara-Curzio and Y. Katoh</p><p style="text-align:justify;"><strong>Interlaboratory Round Robin Study on Axial Tensile Properties of SiC-SiC CMC Tubular Test Specimens</strong></p><p style="text-align:justify;"><em>International Journal of Applied Ceramics Technology, 15, 1334-1349, 2018 (</em><a href="https://onlinelibrary.wiley.com/doi/abs/10.1111/ijac.13010"><em>link</em></a><em>).</em></p><p style="text-align:justify;"><em> </em></p><p style="text-align:justify;">G. Singh, R. Sweet, N. Brown, B. Wirth, Y. Katoh and K. Terrani</p><p style="text-align:justify;"><strong>Parametric Evaluation of SiC/SiC Composite Cladding with UO2 Fuel for LWR Applications: Fuel Rod Interactions and Impact of Nonuniform Power Profile in Fuel Rod</strong> </p><p style="text-align:justify;"><em>Journal of Nuclear Materials</em>, 499, 155-167, 2018 (<a href="https://www.sciencedirect.com/science/article/pii/S0022311517304609">link</a>).</p><p style="text-align:justify;">G. Singh, K. Terrani and Y. Katoh</p><p style="text-align:justify;"><strong>Thermo-Mechanical Assessment of SiC/SiC Composite Cladding for LWR Applications with Sensitivity Analysis</strong></p><p style="text-align:justify;"><em>Journal of Nuclear Materials, 499, 126-143, 2018 (</em><a href="https://www.sciencedirect.com/science/article/pii/S0022311517306876"><em>link</em></a><em>).</em></p><p style="text-align:justify;"><em> </em></p><p style="text-align:justify;">G. Singh, A. Fok and S. Mantell</p><p style="text-align:justify;"><strong>Failure Predictions for Graphite Reflector Bricks in the Very High Temperature Reactor with the Prismatic Core Design</strong></p><p style="text-align:justify;"><em>Journal of Nuclear Engineering and Design, 317, 190-198, 2017 (</em><a href="https://www.sciencedirect.com/science/article/pii/S0029549317301498"><em>link</em></a><em>).</em></p><p style="text-align:justify;"><em> </em></p><p style="text-align:justify;">G. Singh, H. Li, A. Fok and S. Mantell</p><p style="text-align:justify;"><strong>Size Effect on the Fracture Properties of Nuclear Graphite</strong></p><p style="text-align:justify;"><em>ASTM International, 199-217, 2014 </em><em>(</em><a href="https://www.astm.org/DIGITAL_LIBRARY/STP/PAGES/STP157820130125.htm"><em>link</em></a><em>)</em><em>.​</em></p><p style="text-align:justify;"><em><br></em></p><p style="text-align:justify;">H. Li, J. Li, G. Singh and A. Fok<br></p><p style="text-align:justify;"><strong>Fracture Behavior of Nuclear Graphite NBG-18</strong></p><p style="text-align:justify;"><em>Carbon, 46-56, 2013</em><em> (</em><a href="https://www.sciencedirect.com/science/article/pii/S0008622313002741"><em>link</em></a><em>)</em><em>.</em></p><p style="text-align:justify;">H. Ge, G. Singh and S. C. Mantell</p><p style="text-align:justify;"><br></p><p style="text-align:justify;"><strong>Fracture Behavior of Degraded Polyethylene Thin Films for Solar Thermal Applications</strong></p><p style="text-align:justify;"><em>Energy Procedia, 30, 783-792, 2012</em><em> (</em><a href="https://www.sciencedirect.com/science/article/pii/S1876610212016050"><em>link</em></a><em>)</em><em>.</em></p></div>https://bios.inl.gov/BioPhotos/Singh_Photo.jpg<div class="ExternalClass60439F97DBF74011A8B014C2DA78ADAA"><p>​<a href="https://scholar.google.com/citations?user=QItCGPkAAAAJ&hl=en">scholar.google.com/citations?user=QItCGPkAAAAJ&hl=en</a></p><p><a href="https://www.linkedin.com/public-profile/in/gyanendersingh">linkedin.com/public-profile/in/gyanendersingh</a><br></p><p><br></p></div>Computational ScientistSinghGyanender
Pierre-Clément Simon, Ph.D.https://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=918Pierre-Clément Simon, Ph.D. Pierre-Clément (PC) Simon joined INL as a computational materials scientist in March 2021. Pierre-Clément works with the Bison group and the lower length scale group at INL to develop multi-scale, multi-physics approaches. He applies his expertise to understand nuclear materials behavior in a variety of systems such as LWRs, advanced reactors, and fusion reactors. Prior to joining INL, PC graduated from The Pennsylvania State University with a Ph.D. in Nuclear Engineering under the supervision of Dr. Motta and Dr. Tonks in 2021. Before that, he obtained an M.Sc. in Engineering Science from the Ecole Centrale de Lyon in France in 2018, an M.Sc. in Nuclear Engineering from The Pennsylvania State University in 2017, and a B.Sc. in Applied Mathematics from the University Claude Bernard de Lyon in France in 2014. Nuclear Fuelshttps://bios.inl.gov/BioPhotos/PCSimon.pngSimon, Ph.D.Pierre-Clément
Yifeng Che, Ph.D.https://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=919Yifeng Che, Ph.D. ​ Yifeng Che joined Idaho National Laboratory in 2021 as a Russell L. Heath distinguished postdoctoral associate. Her research interests are focused on developing data driven approaches to accelerate the deployment of advanced nuclear energy systems. Dr. Che develops advanced machine learning and Bayesian inference algorithms for reduced-order modeling, sensitivity analysis and uncertainty quantification, with an objective of enhancing the reliability of fuel performance codes. Dr. Che holds a Ph.D. in nuclear science and engineering from Massachusetts Institute of Technology in 2021. <div class="ExternalClass8C7FB5FC832A44F6848416E1CEE1D395"><p>​<span data-contrast="auto" lang="EN-US">Ph.D., Nuclear Science and Engineering - Massachusetts Institute of Technology</span><span data-ccp-props="{"335551550":6,"335551620":6}"> </span></p><div><p><span data-contrast="auto" lang="EN-US">B.S., Nuclear Science and Technology – University of Science and Technology of China</span><span data-ccp-props="{"335551550":6,"335551620":6}"> ​</span></p></div></div><div class="ExternalClassED559E1CEA3143F89AAFFCE034F160D3"><ul><span style="font-family:roboto;font-size:17.3333px;"><li><p>​​​<span data-contrast="auto" lang="EN-US" style="font-family:roboto;font-size:17.3333px;">Nuclear fuel performance modeling</span></p></li><li><p><span style="font-family:roboto;font-size:17.3333px;">Sensitivity analysis and uncertainty quantification<span class="EOP SCXW59730839 BCX0" data-ccp-props="{"134233279":true,"335551550":6,"335551620":6}" style="background-color:transparent;color:windowtext;text-align:justify;margin:0px;padding:0px;line-height:19.425px;font-family:roboto;font-size:17.3333px;"> </span></span></p></li><li><p><span style="font-family:roboto;font-size:17.3333px;">Statistical learning and Bayesian inference<span class="EOP SCXW59730839 BCX0" data-ccp-props="{"134233279":true,"335551550":6,"335551620":6}" style="background-color:transparent;color:windowtext;text-align:justify;margin:0px;padding:0px;line-height:19.425px;font-family:roboto;font-size:17.3333px;"> </span></span></p></li><li><span style="font-family:roboto;font-size:17.3333px;">Machine learning<span class="EOP SCXW59730839 BCX0" data-ccp-props="{"134233279":true,"335551550":6,"335551620":6}" style="background-color:transparent;color:windowtext;text-align:justify;margin:0px;padding:0px;line-height:19.425px;font-family:roboto;font-size:17.3333px;"> </span></span></li></span></ul><p><br></p></div><div class="ExternalClass18CEAEEF7FC64F64BC25B19E6019E3C2"><p>​<span data-contrast="auto" lang="EN-US"><span data-ccp-parastyle="Normal (Web)">Y.Che</span><span data-ccp-parastyle="Normal (Web)">, J. </span><span data-ccp-parastyle="Normal (Web)">Yurko</span><span data-ccp-parastyle="Normal (Web)">, K. </span><span data-ccp-parastyle="Normal (Web)">Shirvan</span><span data-ccp-parastyle="Normal (Web)">, “Machine learning-assisted surrogate construction for full-core fuel performance analysis”, </span><span data-ccp-parastyle="Normal (Web)">arXiv</span><span data-ccp-parastyle="Normal (Web)"> preprint (2021) </span><span data-ccp-parastyle="Normal (Web)">arXiv</span><span data-ccp-parastyle="Normal (Web)">: 2104.09499</span></span><span data-ccp-props="{"134233117":true,"134233118":true,"335551550":6,"335551620":6,"335559738":120,"335559739":80}"> </span></p><div class="OutlineElement Ltr SCXW60398617 BCX0" style="margin:0px;padding:0px;overflow:visible;cursor:text;clear:both;direction:ltr;color:#000000;font-family:"segoe ui", "segoe ui web", arial, verdana, sans-serif;font-size:12px;background-color:#ffffff;"><p><span data-contrast="auto" lang="EN-US"><span data-ccp-parastyle="Normal (Web)">Y. Che, X. Wu, G. Pastore, W. Li, K. </span><span data-ccp-parastyle="Normal (Web)">Shirvan</span><span data-ccp-parastyle="Normal (Web)">, “Application of Kriging and Variational Bayesian Monte Carlo Method for Improved Prediction of Doped UO</span></span><span data-contrast="auto" lang="EN-US"><span data-fontsize="11" data-ccp-parastyle="Normal (Web)">2</span></span><span data-contrast="auto" lang="EN-US"> Fission Gas Release”. Annals of Nuclear Energy (2021), 153, 108046.</span><span data-ccp-props="{"134233117":true,"134233118":true,"335551550":6,"335551620":6,"335559738":120,"335559739":80}"> </span></p></div><div class="OutlineElement Ltr SCXW60398617 BCX0" style="margin:0px;padding:0px;overflow:visible;cursor:text;clear:both;direction:ltr;color:#000000;font-family:"segoe ui", "segoe ui web", arial, verdana, sans-serif;font-size:12px;background-color:#ffffff;"><p><span data-contrast="auto" lang="EN-US">M. Cooper, G. Pastore, Y. Che, C. Matthews, A. Forslund, C. Stanek, K. Shirvan, T. Tverberg, K. Gamble, B. Mays, A. Andersson, “Fission Gas Diffusion and Release for Cr</span><span data-contrast="auto" lang="EN-US"><span data-fontsize="11">2</span></span><span data-contrast="auto" lang="EN-US">O</span><span data-contrast="auto" lang="EN-US"><span data-fontsize="11">3</span></span><span data-contrast="auto" lang="EN-US">-Doped UO</span><span data-contrast="auto" lang="EN-US"><span data-fontsize="11">2</span></span><span data-contrast="auto" lang="EN-US">: From the Atomic to the Engineering Scale”. Journal of Nuclear Materials (2020), 152590.</span><span data-ccp-props="{"335551550":6,"335551620":6,"335559738":120,"335559739":80}"> </span></p></div><div class="OutlineElement Ltr SCXW60398617 BCX0" style="margin:0px;padding:0px;overflow:visible;cursor:text;clear:both;direction:ltr;color:#000000;font-family:"segoe ui", "segoe ui web", arial, verdana, sans-serif;font-size:12px;background-color:#ffffff;"><p><span data-contrast="auto" lang="EN-US">G. Pastore, J.D Hales, Y. Che, K. Shirvan, “Simulation of Cr</span><span data-contrast="auto" lang="EN-US"><span data-fontsize="11">2</span></span><span data-contrast="auto" lang="EN-US">O</span><span data-contrast="auto" lang="EN-US"><span data-fontsize="11">3</span></span><span data-contrast="auto" lang="EN-US">-doped Fuel Tests in IFA-677 and IFA-716 using BISON”. Halden EHPG, Sandefjord, Norway, 2019</span><span data-ccp-props="{"335551550":6,"335551620":6,"335559738":120,"335559739":80}"> </span></p></div><div class="OutlineElement Ltr SCXW60398617 BCX0" style="margin:0px;padding:0px;overflow:visible;cursor:text;clear:both;direction:ltr;color:#000000;font-family:"segoe ui", "segoe ui web", arial, verdana, sans-serif;font-size:12px;background-color:#ffffff;"><p><span data-contrast="auto" lang="EN-US">Y. Che, G. Pastore, K. Shirvan, “Modeling of Cr</span><span data-contrast="auto" lang="EN-US"><span data-fontsize="11">2</span></span><span data-contrast="auto" lang="EN-US">O</span><span data-contrast="auto" lang="EN-US"><span data-fontsize="11">3</span></span><span data-contrast="auto" lang="EN-US">-doped UO</span><span data-contrast="auto" lang="EN-US"><span data-fontsize="11">2</span></span><span data-contrast="auto" lang="EN-US"> as a Near-term Accident Tolerant Fuel for LWRs using the BISON Code”. Nuclear Engineering and Design, 337 (2018): 271-278.</span><span data-ccp-props="{"335551550":6,"335551620":6,"335559738":120,"335559739":80}"> </span></p></div><div class="OutlineElement Ltr SCXW60398617 BCX0" style="margin:0px;padding:0px;overflow:visible;cursor:text;clear:both;direction:ltr;color:#000000;font-family:"segoe ui", "segoe ui web", arial, verdana, sans-serif;font-size:12px;background-color:#ffffff;"><p><span data-contrast="auto" lang="EN-US">M. Ševeček, A. Gurgen, A. Seshadri, Y. Che, M. Wagih, B. Phillips, ... & K. Shirvan, "Development of Cr Cold-Spray Coated Fuel Cladding with Enhanced Accident Tolerance.” Nuclear Engineering and Technology.</span><span data-contrast="none" lang="EN-US"> </span><span data-contrast="auto" lang="EN-US">50(2018): 229-236.</span><span data-ccp-props="{"335551550":6,"335551620":6,"335559738":120,"335559739":80}"> </span></p></div><div class="OutlineElement Ltr SCXW60398617 BCX0" style="margin:0px;padding:0px;overflow:visible;cursor:text;clear:both;direction:ltr;color:#000000;font-family:"segoe ui", "segoe ui web", arial, verdana, sans-serif;font-size:12px;background-color:#ffffff;"><p><span data-contrast="auto" lang="EN-US">Y. Che, X. Wu, W. Li, G. Pastore, J Hales, K. Shirvan, “Sensitivity and Uncertainty Analysis of Fuel Performance Assessment of Chromia-doped Fuel during Large-break LOCA”. Proceedings of TopFuel, 119 (2018): 440-443.</span><span data-ccp-props="{"335551550":6,"335551620":6,"335559738":120,"335559739":80}"> </span></p></div><div><p><span data-contrast="auto" lang="EN-US">Wagih, M., Y. Che, and K. Shirvan, "Fuel Performance of Multi-Layered Zirconium Based Accident Tolerant Fuel Cladding". Proceedings of 2017 international congress on advances in nuclear power plants. 49 (2017): 2573.</span><span data-ccp-props="{"335551550":6,"335551620":6,"335559738":120,"335559739":80}"> </span></p></div><p><br></p></div>https://bios.inl.gov/BioPhotos/Yifeng%20Che.JPGCheYifeng

​​​​