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1 Introduction

BISON [1] is a finite element-based nuclear fuel performance code applicable to a variety of
fuel forms including light water reactor fuel rods, TRISO particle fuel [2], and metallic rod [3]
and plate fuel. It solves the fully-coupled equations of thermomechanics and species diffusion,
for 1D spherically symmetric, 2D axisymmetric or 3D geometries. Fuel models are included to
describe temperature and burnup dependent thermal properties, fission product swelling, densifi-
cation, thermal and irradiation creep, fracture, and fission gas production and release. Plasticity,
irradiation growth, and thermal and irradiation creep models are implemented for clad materials.
Models are also available to simulate gap heat transfer, mechanical contact, and the evolution
of the gap/plenum pressure with plenum volume, gas temperature, and fission gas addition. BI-
SON is based on the MOOSE framework [4] and can therefore efficiently solve problems using
standard workstations or very large high-performance computers.

Two input files are required as input when running BISON. One is a mesh file. While MOOSE
supports several file formats, the Exodusll [5] format is the one used almost exclusively in
BISON. This file commonly has “e” as its file extension. The mesh file may be generated
using CUBIT [6] or another meshing tool. A further option is a meshing script bundled with
BISON. This script, dependent on CUBIT and suitable for LWR fuel rod meshes, is the subject
of Chapter 26.

The second file is a text file. This file commonly has as its extension and contains a
description of the variables, equations, boundary conditions, and material models associated
with an analysis. The structure of the text input file is the main focus of this document.

(33431
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2 Running BISON

2.1 Checking Out the Code

BISON is now hosted on GitLab and the process of checking out the code has significantly
changed since SVN. The instructions for checking out the code is different depending upon
whether you are an internal (INL onsite user) or external user. These instructions are only for
checking out and running the code. If you plan to contribute to BISON detailed instructions for
contributing can be found on the idaholab/bison wiki page on GitLab.

2.1.1 Internal Users

The first step is to obtain an INL High Performance Computing (HPC) account. Once HPC
access has been granted go to the GitLab website (https://hpcgitlab.inl.gov/) and login with your
HPC username and password on the LDAP tab shown in Figure 2.1.

Sign in

LDAP Standard

LDAP Sign in

Figure 2.1: GitLab login screen.

Once logged in and access has been granted to the idaholab/bison repository the following
steps are required fot the initial checkout of the code:

First add an SSH key to your GitLab profile. To do so execute the code below in a terminal.
and copy-paste the key to the "My SSH Keys’ section under the ’SSH’ tab in your user profile
on GitLab.


https://hpcgitlab.inl.gov/

ssh-keygen -t rsa -C "your_email"
cat ~/.ssh/id_rsa.pub

Then copy-paste the key to the "My SSH Keys’ section under the 'SSH’ tab in your user
profile on GitLab. Next clone the BISON GitLab repository.

cd ~/projects/
git clone git@hpcgitlab.inl.gov:idaholab/bison.git

Next initialize the MOOSE submodule:

cd ~/projects/bison/
git submodule update --init

It is necessary to build libMesh before building any application:

cd ~/projects/bison/moose/scripts
./update_and_rebuild_libmesh.sh

Once libMesh has compiled successfully, you may now compile BISON:

cd ~/projects/bison/
make (add -jn to run on multiple "n" processors)

Once BISON has compiled successfully, it is recommended to run the tests to make sure the
version of the code you have is running correctly.

cd ~/projects/bison/
./run_test (add -jn to run "n" jobs at one time)

2.1.2 External Users

For external users there are a few additional steps to checking out the code. First request an
HPC account. This can be requested at the HPC registration page (https://secure.inl.gov/caims/).
Once an HPC account has been generated an ssh tunnel will need to be set up to access GitLab.
Add the following lines to your /.ssh/config file. Replace <USERNAME> with the username
for your HPC account.

#Multiplex connections for less RSA typing
Host *

ControlMaster auto

ControlPath ~/.ssh/master-%r@%h:%p

# General Purpose HPC Machines
Host eos hpcsc floginl flogin2 quark
User <USERNAME >
ProxyCommand ssh <USERNAME>@hpclogin.inl.gov netcat %h %p

#GitLab
Host hpcgitlab.inl.gov



https://secure.inl.gov/caims/

User <USERNAME >
ProxyCommand nc -x localhost:5555 %h %p

#Forward license servers, webpages, and source control
Host hpclogin hpclogin.inl.gov

User <USERNAME >

HostName hpclogin.inl.gov

LocalForward 8080 hpcweb:80

LocalForward 4443 hpcsc:443

Next create a tunnel into the HPC environment and leave it tunning while you require access
to GitLab. If you close this window, you close the connection:

ssh -D 5555 username@hpclogin.inl.gov

Then you have to adjust your socks proxy settings for your web browser to reflect the follow-
ing settings localhost:5555

If you do not know how to do that, look up Change socks proxy settings for <insert the
name of your web browser here> on google.com or some other search engine. Once that is
complete you can login to the GitLab website. The rest of the steps for checking out the code
are the same as for internal users.

2.2 Updating BISON

If it has been some time since you have checked out the code an update will be required to gain
access to the new features within BISON. The following instructions apply to both internal and
external users to update the code. Note that external users must have their ssh tunnel set up prior
to proceeding. First update BISON:

cd ~/projects/bison/
git pull

Then update the MOOSE submodule:

cd ~/projects/bison/
git submodule update

Next rebuild libMesh:

cd ~/projects/bison/moose/scripts/
./update_and_rebuild_libmesh.sh

And finally recompile BISON:

cd ~/projects/bison/
make (add -jn to run on multiple "n" processors)

10
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2.3 Executing BISON

When first starting out with BISON, it is recommended to start from an example problem similar
to the problem that you are trying to solve. Multiple examples can be found at bison/examples/
and bison/assessment/. It may be worth running the example problems to see how the code
works and modifying input parameters to see how the run time, results and convergence behavior
change.

To demonstrate running BISON, consider the inputSmeared. i example problem.

cd ~/projects/bison/examples/2D-RZ_rodlet_10pellets
# To run with one processor
~/projects/bison/bison-opt -i inputSmeared.i

# To run in parallel (4 processors)

mpiexec -n 4 ../../bison-opt -i inputSmeared.i

2.4 Getting Started

2.4.1 Input to BISON

Before running any problem, the power function, axial profile, mesh, and any functions needed
for boundary conditions need to be generated.

Typically, aPiecewiseLinear function is used together with an external data file to specify a
complex power history. This file has time and power specified in columns or rows, with the first
row (or column) being the time (seconds) and the second row (or column) being power (W/m).
Any data file that is used as input to BISON must be in Windows comma separated values (csv)
format. Looking at inputSmeared. i, the power history is specified as:

[./power_history]
type = Piecewiselinear
data_file = powerhistory.csv
format = rows
scale_factor = 1.0

[../]

The axial power profile, if present, is input as a PiecewiseBilinearFile. The axial peaking
factors are input as a table within the file, with the top row being the axial location from the
bottom of the rod and the left column as time. The axial peaking factors used for the example
problem inputSmeared.i for the first three axial locations is as follows:

9.44E-03, 1.54E-02, 2.13E-02
0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00
1.00E+00, 5.37E-01, 8.68E-01, 1.01E+00
1.50E+08, 5.37E-01, 8.68E-01, 1.01E+00

The mesh can either be generated with the mesh script described in Chapter 26, or if you do
not have CUBIT, you can generate a simple 2D-RZ axisymmetric mesh with smeared solid fuel
pellets (single fuel column) with the SmearedPelletMesh within BISON. To generate the mesh
similar to the one used in the example problem inputSmeared.i, the mesh block would look like:

11




[Mesh]
type = SmearedPelletMesh

clad_mesh_density = customize

pellet_mesh_density = customize

ny_p = 80 # Total number of axial elements in fuel

nx_p = 11 # Number of radial elements in fuel

nx_c = 5 # Number of elements through thickness of clad
ny_cu = 3 # Number of axial element of upper clad gap
ny_c = 80 # Number of axial elements of clad wall

ny_cl = 3 # Number of axial elements of lower clad cap
clad_thickness = 5.6e-4

pellet_outer_radius = 0.0041

clad_bot_gap_height 1.0e-3

pellet_quantity = 10

pellet_height = 0.01186

plenum_fuel_ratio = 0.045 # or use clad_top_gap_height = 3.0e-3
clad_gap_width = 8e-5

top_bot_clad_height = 2.24e-3

elem_type = QUADS

displacements = ’'disp_x disp_y'

patch_size = 1000

2.4.2 Post Processing

BISON typically writes solution data to an ExoduslI file. Data may also be written in other
formats, a simple comma separated file giving global data being the most common.

Several options exist for viewing ExoduslI results files. These include commercial as well as
open-source tools. One good choice is Paraview, which is open-source.

Paraview is available on a variety of platforms. It is capable of displaying node and element
data in several ways. It will also produce line plots of global data or data from a particular node
or element. A complete description of Paraview is not possible here, but a quick overview of
using Paraview with BISON results is available in the BISON workshop material.

2.4.3 Graphical User Interface

It is worth noting that a graphical user interface (GUI) exists for all MOOSE-based applications.
This GUI is named Peacock. Information about Peacock and how to set it up for use may be
found on the MOOSE wiki page.

Peacock may be used to generate a text input file. It is also capable of submitting the analysis.
Finally, it provides basic post processing capabilities.

12
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3 Overview

3.1 Basic Syntax

The input file used by BISON is broken into sections or blocks identified with square brackets.
The type of input block is placed in the opening brackets, and empty brackets mark the end of
the block.

[BlockName]
<block lines and subblocks>

[l

Each block may have subblocks, which may in turn have subblocks. The Functions block,
for example, will have multiple subblocks, each corresponding to a specific function. The line
commands in the Functions subblocks will describe the function details.

subblocks are opened and closed as

[./subblock_name]
<line commands>

[../]

Note that the name given in the subblocks must be unique when compared with all other sub-
blocks in the current block.

Line commands are given as key/value pairs with an equal sign between them. They specify
parameters to be used by the object being described. The key is a string (no whitespace), and
the value may be a string, an integer, a real number, or a list of strings, integers, or real numbers.
Lists are given in single quotes and are separated by whitespace.

Often subblocks will include a type line command. This line command specifies the partic-
ular type of object being described. The object type indicates which line commands are appro-
priate for describing the object. BISON will give an error message if a line command is given
that does not apply for the current object type. An error message will also be given if a line
command is repeated within the current block or if a line command is unused during the initial
setup of the simulation.

In this document, line commands are shown with the keyword, an equal sign, and, in angle
brackets, the value. If a default value exists for that line command, it is shown in parentheses.

In the initial description of a block, line commands common to all subblocks will be described.
Those line commands are then omitted from the description of the subblocks but are nonetheless
valid line commands for those subblocks.

The name of a subblock ([ ./<name>]) is most often arbitrary. However, the names of sub-
blocks of Variables, AuxVariables, and Postprocessors define the names used for those
entities.

13




3.2 BISON Syntax Page

A complete listing of all input syntax options in MOOSE is available on the MOOSE Doc-
umentation page. See the section on Input File Documentation. Note also that you can run
./bison-opt --dump to get a list of valid input options for BISON.

3.3 Units

Because BISON uses several empirical models, BISON input expects SI units. This simplifies
model input by eliminating the possibility of one set of units for one model and another set of
units for a different model. Any needed unit conversions are done inside BISON.

3.4 High-Level Description of a BISON Simulation

The primary purpose of BISON is to solve coupled systems of partial differential equations
(PDEs), where the equations represent important physics related to engineering scale nuclear
fuel behavior. Fuel simulations typically consist of solving the following energy, momentum,
and mass (or species) conservation equations,

pCpaa];—l-V-q—efF =0, (3.1
V.c+pf=0. (3.2)
aaf+v-J+AC—S:o, (3.3)

In Equation 3.1, T', p and C), are the temperature, density and specific heat, respectively, e is
the energy released in a single fission event, and F is the volumetric fission rate.

Momentum conservation (Equation 3.2) is prescribed assuming static equilibrium at each time
increment where G is the Cauchy stress tensor and f is the body force per unit mass (e.g. gravity).
The displacement field u, which is the primary solution variable, is connected to the stress field
via the strain, through a constitutive relation.

In the equation for species conservation (3.3) C, A, and S are the concentration, radioactive
decay constant, and source rate of a given species, respectively.

Often, fuels performance problems are limited to thermomechanics, where only Equations 3.1
and 3.2 are solved.

Each term in Equations 3.1 - 3.3 (time derivatives, divergence, source, sinks, etc.) are referred
to as kernels and are discussed in greater detail in Chapter 14.

These equations are solved simultaneously using the finite element method (FEM) and JFNK
approach [7] on a discretized domain. The domain (also referred to as a mesh) may represent
uranium dioxide fuel pellets and zirconium clad in a light water reactor (LWR) simulation.
Blocks, side sets, and node sets are defined on the mesh such that material models and boundary

14
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conditions can be assigned to different parts of the model. Details regarding the mesh, material
models, and boundary conditions can be found in chapters 6, 16, and 10 respectively.

Kernels, boundary conditions, and material models may require supporting information and
calculations. This is achieved through the use of Functions and AuxKernels, which are detailed
in chapters 9 and 12. For example, a function can be used to define power and time value pairs,
which would inform the source term in the energy equation (Equation 3.1). An AuxKernel could
be used to define fission rate or burnup, which could be used to inform material models that are
dependent on those values. AuxKernels can also be used for writing information, such as stress
components, to the output file.

Execution on the analysis is described in the Executioner block. Line commands describe
time stepping details and solver options. See Chapter 19 for details.

MOOSE Postprocessors compute a single scalar value at each timestep. These can be mini-
mums, maximums, averages, volumes, or any other scalar quantity. One example of the use of
Postprocessors in BISON is computing the gas volume of an LWR rod. The gas volume changes
timestep to timestep, but since it is a single scalar quantity, a Postprocessor computes this value.
Chapter 18 gives examples.

The following sections delve deeper into the topics mentioned here. The format basically
follows that of a typical BISON LWR input file and provides details for each section. Required
parameters have Required included in their description throughout the document.
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4 Global Parameters

The GlobalParams block specifies parameters that are available, as appropriate, in any other
block or subblock in the input file. For example, imagine a subblock that accepts a line com-
mand with the keyword value. If the subblock has a line command for value, that line com-
mand will be used regardless of what is in GlobalParams. However, if the line command is
missing in the subblock but defined in GlobalParams, the subblock will use the parameter de-
fined in GlobalParams. In the example below, the line commands order = FIRST and family
= LAGRANGE will be available in all blocks and subblocks in the remainder of the input file.

[GlobalParams]
order = FIRST
family = LAGRANGE

[]
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5 Problem

The Problem block is typically only used to indicate that a model should run as axisymmetric
(RZ) or spherically symmetric (RSPHERICAL). If the model is 3D, the Problem block may be
omitted.

[Problem]
coord_type = <string>

[]

There are two advanced cases that require a [Problem] block to be included in the input file.
These cases are a known as ReferenceResidualProblem and FrictionalContactProblem.
When using either of these types there are many required additions throughout the input file.
Therefore ReferenceResidualProblem and FrictionalContactProblem are discussed in
Chapters 24 and 25 respectively.

17




6 Mesh

The Mesh block’s purpose is to give details about the finite element mesh to be used. Typi-
cally meshes for BISON simulations are created using the mesh generation tool Cubit (known
as Trelis for non-DOE users). For simulations of LWR fuel there is a mesh script found in
bison/tools/UO2/. The details of the mesh script are provided in Chapter 26.

[Mesh]
file = <string>
displacements = <string list>
patch_size = <integer> (40)

[]

file Required. This is the mesh file name. BISON uses Exodusll mesh files.

displacements List of the displacement variables. This line must be given if the analysis
is to use contact or nonlinear geometry. Typically ' disp_x disp_y’ for
an axisymmetric analysis.

patch_size Number of nearby elements to consider as possible contacting surfaces.
The value for the patch size depends upon whether Dirac or Constraint
based contact is used. For Dirac a typical value is 1000. For Constraint it
is ideal to choose a small enough patch size that encompasses all possible
contacting surfaces to reduce memory requirements. For example, if the
fuel moves up the clad 8 nodes make the patch size 20. This will allow
the contact search to use 10 nodes above and 10 nodes belows the point at
which the fuel comes into contact with the clad.

For users that do not have access to Cubit or Trelis but want to simulate LWR fuel there is a
SmearedPelletMesh type that can be used to generate a mesh for modeling a smeared column of
fuel (i.e. no dishes and or chamfers). The structure of the SmearedPelletMesh block is outlined
below:

[Mesh]
type = SmearedPelletMesh
clad_mesh_density = <string> (medium)
pellet_mesh_density = <string> (medium)
ny_p = <integer> (24)
nx_p = <integer> (8)
nx_c = <integer> (2)
ny_cu = <integer> (1)
ny_c = <integer> (24)
ny_cl = <integer> (1)
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clad_thickness

pellet_outer_radius =
clad_bot_gap_height =

pellet_quantity
elem_type =
displacements =
patch_size =

<string>

<real> (0.00041)
<real> (0.0041)
<real> (0.00127)

<real> (2)
(QUAD4)

<string list>
<integer> (4)

type
cladmesh_density

pellet mesh density

ny-p
nx_p

nx_c

ny_cu

ny-c

ny_cl

clad_thickness
pellet_outer_radius

clad_bot_gap-height

pellet_quantity
pellet_height

plenum_fuel_ratio

clad_top_gap-height

clad_gap_-width
top_bot_clad_height
elem_type

SmearedPelletMesh

Mesh density of the clad. Choices are coarse, medium, fine or
custom. Default is medium.

Mesh density of the fuel pellets. Choices are coarse, medium, fine
or custom. Default is medium.

Number of finite elements in a fuel pellet in the axial direction.

Number of finite elements in a fuel pellet in the radial direction.
Number of finite elements through the thickness of the cladding in
the radial direction.

Number of finite elements through the thickness of the cladding in
the axial direction of the upper plug.

Number of finite elements axially through the cladding.

Number of finite elements through the thickness of the cladding in
the axial direction of the lower plug.

The cladding thickness.

The outer radius of the pellet.

Gap between bottom of pellet stack and the inside bottom surface
of the cladding.

Number of pellets to be included.

The height of the pellet.

Ratio of the axial gas height to the fuel height inside the cladding.

Either plenum_fuel_ratio or clad_top_gap_height must be
specified but not both.

Gap between top of pellet and inside top surface of cladding. Either
plenum_fuel ratio or clad_top_gap_height must be specified
but not both.

Gap between outer radius of pellet and inside surface of cladding.

Thickness of top and bottom cladding walls.

Type of finite element. Default is QUAD4. For second-order

meshes use QUADS.

19




displacements

patch_size

List of the displacement variables. This line must be given if the
analysis is to use contact or nonlinear geometry. Typically ’ disp_x
disp_y’ for an axisymmetric analysis.

Number of nearby elements to consider as possible contacting sur-
faces. The value for the patch size depends upon whether Dirac or
Constraint based contact is used. For Dirac a typical value is 1000.
For Constraint it is ideal to choose a small enough patch size that
encompasses all possible contacting surfaces to reduce memory re-
quirements. For example, if the fuel moves up the clad 8 nodes
make the patch size 20. This will allow the contact search to use 10
nodes above and 10 nodes belows the point at which the fuel comes
into contact with the clad.
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7 Variables

The Variables block is where all of the primary solution variables are identified. The name
of each variable is taken as the name of the subblocks. Primary solution variables often in-
clude temperature (usually named temp) and displacement (usually named disp_x, disp-y, and
disp_z).

[Variables]
[./varl]
order = <string>
family = <string>
[../]
[./var2]
order = <string>
family = <string>
initial_condition = <real>
scaling = <real> (1)
[../]
[
order The order of the variable. Typical values are FIRST and SECOND.
family The finite element shape function family. A typical value is

LAGRANGE.

initial _condition Optional initial value to be assigned to the variable. Zero is assigned
if this line is not present.

scaling Amount to scale the variable during the solution process. This scal-
ing affects only the residual and preconditioning steps and not the
final solution values. This line command is sometimes helpful when
solving coupled systems where one variable’s residual is orders of
magnitude different that the other variables’ residuals.
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8 AuxVariables

The AuxVariables block is where all of the auxiliary variables are identified. The name of each
variable is taken as the name of the subblocks. Auxiliary variables are used for quantities such
as fast neutron flux, element-averaged stresses, and other output variables.

[AuxVariables]

[./varl]
order = <string>
family = <string>
[../]
[./var2]
order = <string>
family = <string>
initial_condition = <real>
[../]
[]
order The order of the variable. Typical values are CONSTANT, FIRST, and
SECOND.
family The finite element shape function family. Typical values are

MONOMIAL and LAGRANGE.
initial_condition Optional initial value to be assigned to the variable. Zero is assigned
if this line is not present.

22




9 Functions

9.1 Composite

The Composite function takes an arbitrary set of functions, provided in the functions pa-
rameter, evaluates each of them at the appropriate time and position, and multiplies them to-
gether. The function can optionally be multiplied by a scale factor, which specified using the
scale_factor parameter.

[./composite]

type = CompositeFunction
functions = <string list>
scale_factor = <real> (1.0)
[../]
type CompositeFunction
functions List of functions to be multiplied together.

scale_factor Scale factor to be applied to resulting function. Default is 1.

9.2 ParsedFunction

The ParsedFunction function takes a mathematical expression in value. The expression can
be a function of time (t) or coordinate (x, y, or z). The expression can include common math-
ematical functions. Examples include *4ed+1e2*t’, *sqrt(x*x+y*y+z*z)’, and ’if(t<=1.0, 0.1%t,
(1.040.1)*cos(pi/2*(t-1.0)) - 1.0)’. Constant variables may be used in the expression if they
have been declared with vars and defined with vals. Further information can be found at
http://warp.povusers.org/FunctionParser/.

[./parsedfunction]

type = ParsedFunction

value = <string>

vals = <real list>

vars = <string list>
[../]

type ParsedFunction
value Required. String describing the function.

vals Values to be associated with variables in vars.
vars Variable names to be associated with values in vals.
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9.3 PiecewiseBilinear

The PiecewiseBilinear function reads a csv file and interpolates values based on the data in
the file. The interpolation is based on x-y pairs. If axis is given, time is used as the y index.
Either xaxis or yaxis or both may be given. Time is used as the other index if one of them
is not given. If radius is given, xaxis and yaxis are used to orient a cylindrical coordinate
system, and the x-y pair used in the query will be the radial coordinate and time.

[./piecewiselinear]

type = PiecewiseBilinear
data_file = <string>
axis = <0, 1, or 2 for x, y, or z>
xaxis = <0, 1, or 2 for x, y, or z>
yaxis = <0, 1, or 2 for x, y, or z>
scale_factor = <real> (1.0)
radial = <bool> (false)
[../]
type PiecewiseBilinear
data_file File holding your csv data.
axis Coordinate direction to use in the function evaluation.
xaxis Coordinate direction used for x-axis data.
yaxis Coordinate direction used for y-axis data.

scale_factor Scale factor to be applied to resulting function. Default is 1.

radial Set to true if interpolation should be done along a radius rather than along
a specific axis. Requires xaxis and yaxis.

9.4 PiecewiseConstant

The PiecewiseConstant function defines the data using a set of x-y data pairs. Instead of lin-
early interpolating between the values, however, the PiecewiseConstant function is constant
when the abscissa is between the values provided by the user. The direction parameter con-
trols whether the function takes the value of the abscissa of the user-provided point to the right
or left of the value at which the function is evaluated.

[./pilecewiseconstant]
type = PiecewiseConstant
x = <real list>
y = <real list>
xy_data = <real list>
data_file = <string>
format = <string> (rows)
scale_factor = <real> (1.0)
axis = <0, 1, or 2 for x, y, or z>
directon = <string> (left)
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type PiecewiseConstant

X List of x values for x-y data.

y List of y values for x-y data.
xy_data List of pairs of x-y data points.
data_file Name of an file containing x-y data.
format Format of x-y data in external file.

scale_factor Scale factor to be applied to resulting function. Default is 1.

axis Coordinate direction to use in the function evaluation. If not present, time
is used as the function input.

9.5 PiecewiseLinear

The PiecewiseLlinear function performs linear interpolations between user-provied pairs of
x-y data. The x-y data can be provided in three ways. The first way is through a combination of
the x and y paramaters, which are lists of the X and y coordinates of the data points that make
up the function. The second way is in the xy_data parameter, which is a list of pairs of x-y
data that make up the points of the function. This allows for the function data to be specified in
columns by inserting line breaks after each x-y data point. Finally, the x-y data can be provided
in an external file containing comma-separated values. The file name is provided in data_file,
and the data can be provided in either rows (default) or columns, as specified in the format
parameter.

By default, the x-data corresponds to time, but this can be changed to correspond to X, y, or z
coordinate with the axis line. If the function is queried outside of its range of x data, it returns
the y value associated with the closest x data point.

[./piecewiselinear]
type = Piecewiselinear
x = <real list>
y = <real list>
xy_data = <real list>
data_file = <string> (rows)
format = <string>
scale_factor = <real> (1.0)
axis = <0, 1, or 2 for x, y, or z>

[../]

type PiecewiseLinear

X List of x values for x-y data.

y List of y values for x-y data.
xy_data List of pairs of x-y data points.
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data_file Name of an file containing x-y data.
format Format of x-y data in external file.
scale_factor Scale factor to be applied to resulting function. Default is 1.

axis Coordinate direction to use in the function evaluation. If not present, time
is used as the function input.
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10 Boundary Conditions

The BCs block is for specifying various types of boundary conditions.

[BCs]
[./name]
type = <BC type>
boundary = <string list>
[../]
[]
type Type of boundary condition.

boundary List of boundaries (side sets). Either boundary numbers or names.

10.1 BulkCoolantBC

The BulkCoolantBC boundary condition determines the heat transfer from a boundary based
upon a bulk coolant temperature and coolant heat tansfer coefficient.

[./bulkcoolantBC]
type = BulkCoolantBC
variable = <variable>
boundary = <string list>
bulk_temperature = <real> (800)
heat_transfer_coefficient = <real> (2000)
[../]
type BulkCoolantBC
variable Required. Primary variable associated with this boundary
condition.
boundary Required. List of boundary names or ids where this bound-
ary condition will apply.
bulk_temperature The bulk coolant temperature.

heat_transfer_coefficient The heat transfer coefficient of the coolant.
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10.2 ConvectiveFluxBC

The ConvectiveFluxBC boundary condition determines the value on a boundary based upon
the initial and final values, the flux through the boundary and the duration of exposure..

[

[.

/convectivefluxBC]

type = ConvectiveFluxBC
variable = <variable>
boundary = <string list>
initial = <real> (500)
final = <real> (500)
rate = <real> (7500)

e

type ConvectiveFluxBC

variable Required. Primary variable associated with this boundary condition.

boundary Required. List of boundary names or ids where this boundary condition will

apply.
initial  The initial value of the variable on the boundary.
final The final value of the variable on the boundary.
rate The flux of the variable through the boundary.

10.3 ConvectiveFluxFunction

The ConvectiveFluxFunction boundary condition determines the value on a boundary based
upon the heat transfer coefficient of the fluid on the outside of boundary and far-field tempera-

ture.

[

./convectivefluxFunction]

type = ConvectiveFluxFunction
variable = <variable>
boundary = <string list>
T_infinity= <string>
coefficient = <real>
coefficient_function = <string>
[../]
type ConvectiveFluxFunction
variable Required. Primary variable associated with this boundary condi-
tion.
boundary Required. List of boundary names or ids where this boundary
condition will apply.
T_infinity Required. The name of the function describing the far-field tem-
perature.
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coefficient Required. The heat transfer coefficient of the fluid in contact
with the boundary. If coefficient_function is provided this
coefficient multiplies the function.

coefficient_function Function describing the heat transfer coefficient.

10.4 CoolantChannel

The effect of the coolant on the heat transfer at the exterior cladding surface can be modeled
using the CoolantChannel feature. This feature appears in the input file in its own block (i.e.,
not inside the BCs block).

The presence of some input parameters causes others to be ignored. The following describes
the input parameter precedence.

If heat _transfer_coefficient is given, its value will be assigned to the given boundary.
All other parameters related to the heat transfer coefficient calculation are ignored.

Enthalpy is taken as coupledEnthalpy if present. Otherwise, heat flux is calculated based on
linear_heat_rate, specification of number_axial_zone, and specification of heat_flux, in
highest precedence order. The integrated heat flux is computed based on the same precedence.
As an example, if number_axial_zone and heat_flux are specified, heat _flux will be ignored.
These are used as inputs to the heat transfer coefficient correlations.

The coolant _material is water by default. It can be instead set to sodium, and a heat transfer
correlation for liquid sodium is used. With sodium coolant, calculations for phase change are
disabled. By default, the subchannel geometry is set to triangular if the user selects sodium
coolant, but this can be changed to a square channel if desired.

[CoolantChannel]
[./coolantchannel]

boundary = <string list>
variable = <string>
axial_power_profile = <string>
blockage_ratio = <real> (0)
chf_correlation_type=<int> (4)
compute_enthalpy =<bool> (true)
cond_metal = <real>
cond_oxide = <real>
coolant_material = <string>
coupledEnthalpy = <string>
direction = <string>
direction2 = <string>
flooding_rate = <real>
flooding_time = <real>
flow_area = <real>
fuel_stack_length = <real>
fuel_stack_bottom = <real>
heat_flux = <string>
heat_transfer_coefficient = <string or real>
heat_transfer_mode = <string> (0)
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heated_diameter

heated_perimeter
htc_correlation_type
hydraulic_diameter
<real>
initial_temperature

initial_power =

<real>

<real>

= <string>
<real>

<real>

inlet_massflux = <string or real>

inlet_pressure

inlet_temperature
input_Tchf = <real>
input_Tmin = <real>
input_rewetting_htc
linear_heat_rate

model_post_chf

number_axial_zone
number_lateral_zone

<string or real>
<string or real>
(0)

(0)

<real> (1.0e5)

<string>
<bool> (true)
<integer> (0)

<integer> (1)

oxide_thickness <string>
oxide_model = <string> (zirconia)
pbr = <real>

reflooding_model <int> (1)
rod_diameter = (0.01)
rod_pitch = <real> (0.0126)

specified_height
subchannel_geometry

<real> (0)

<string>

[../]
[]
boundary Required. List of boundaries. Typically only one boundary
id is given.
variable Required. Name of variable associated with this BC. Typ-

axial_power_profile
blockage_ratio

chf _correlation_type

compute_enthalpy
cond_metal
cond_oxide

coolant_material
coupledEnthalpy

direction

ically temp.
Function name for function describing axial power factors.
Flow blockage ratio used in FLECHT correlations.

CHEF correlatons. one of 1 for EPRI, 2 for GE, 3 for Zuber,
and 4 for BIASI.

option to turn on /off the enthalpy calculation.
Conductivity of the metal. Used if oxide model is user.
Conductivity of the oxide. Used if oxide_model is user.

Water or sodium. Defaults to water.

Variable name. If given, enthalpy is taken from this variable
directly instead of being calculated.

One of x, y, or z. Coordinate direction associated with fluid
flow. Default is y.
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direction2

flooding_rate
flooding_time

flow_area

fuel_stack_bottom
fuel_stack_length
heat_flux

heat_transfer_coefficient

heat_transfer_mode

heated_diameter

heated_perimeter

htc_correlation_type

hydraulic_diameter

initial_power
initial_temperature

inlet_massflux

One of x, y, or z. Coordinate direction associated with lat-
eral dimension of model. Default is x. This input is used
for plate geometry.

Inlet fooding rate.

The starting time of flooding.

Flow area. If used, must be used with heated_diameter,

heated_perimeter, and hydraulic_diameter. If used,
rod_diameter and rod_pitch will be ignored.

The axial position of the fuel stack bottom.
The length of fuel stacks.

Function name for function describing the heat flux at the
cladding surface.

Either a function name for a function describing the heat
transfer coefficient or a real value to be assigned as the heat
transfer coefficient. If present, other parameters controlling
the heat transfer coefficient calculation will be ignored.

One of 0 (automatic), 1 (natural convection), 2 (forced lig-
uid convection), 3 (subcooled boiling), 4 (saturated boil-
ing), 5 (transition boiling), 6 (film boiling), and 7 (single
phase vapor).

Heated diameter. If used, must be used with flow_area,
heated_perimeter, and hydraulic_diameter. If used,
rod_diameter and rod_pitch will be ignored.

Heated perimeter. If used, must be used with flow_area,
heated_diameter, and hydraulic_diameter. If used,
rod_diameter and rod_pitch will be ignored.

One of 1 (Thom), 2 (Jens Lottes), 3(Chen) or 4 (Shrock-
Grossman) for pre-CHF correlations;

or 1 (McDonough-Milich-King) and 2 (modified Condie-
Bengtson) for transition boiling correlations;

or 1 (Groenveld) and 2 (Dougall-Rohsenow) for film boil-
ing correlations.

Hydraulic diameter. If used, must be used with flow_area,
heated_perimeter, and heated_diameter. If used,
rod_diameter and rod_pitch will be ignored.

Initial peak power (kW/m).

Initial peak clad temperature.

Either a function name for a function describing the inlet

mass flux or a real value to be assigned as the inlet mass
flux.
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inlet_pressure

inlet_temperature

input_Tchf
input_Tmin
input_rewetting_htc
linear_heat_rate

number_axial_zone

number_lateral_zone

model_post_chf

oxide_thickness
oxide_model
reflooding_model
rod_diameter
rod_pitch

specified_height

subchannel _geometry

10.5 Dirichlet

10.5.1 DirichletBC

Either a function name for a function describing the inlet
pressure or a real value to be assigned as the inlet pressure.

Either a function name for a function describing the inlet
temperature or a real value to be assigned as the inlet tem-
perature.

Input temperature at critical heat flux.

Input rewetting temperature.

Input rewetting heat transfer coefficient.

Function name for a function describing the linear heat rate.

Number of axial divisions along the cladding to be used in
integrating the heat flux.

Number of lateral divisions along the cladding to be used
in integrating the heat flux. This input is used for plate
geometry.

Option to turn on or off post-CHF calculations.

Name of AuxVariable representing the oxide thickness. If
not given, the calculated heat transfer coefficient will not
account for an oxide layer.

One of zirconia, alumina, or user.

Model options for modeling reflooding : either 0
oldcorrelation or 1 newWestinghousecorrelation .
Diameter of the fuel rod.

Pitch or spacing between fuel rods.

The input to compute reflooding heat transfer at a specified
axial location; used for testing purpose only.

Geometry of the pin array: either square or triangular. If
not specified, the geometry is square if the coolant is water
or triangular if the coolant is sodium.

[./dirichletbc]

type = DirichletBC
variable = <variable>

boundary = <string list>

value = <real>

[../]
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type DirichletBC

variable Required. Primary variable associated with this boundary condition.

boundary Required. List of boundary names or ids where this boundary condition will
apply.

value Required. Value to be assigned.

10.5.2 PresetBC

The PresetBC takes the same inputs as DirichletBC and also acts as a Dirichlet boundary
condition. However, the implementation is slightly different. PresetBC causes the value of
the boundary condition to be applied before the solve begins where DirichletBC enforces the
boundary condition as the solve progresses. In certain situations, one is better than another.

10.5.3 FunctionDirichletBC

[./functiondirichletbc]
type = FunctionDirichletBC
variable = <variable>
boundary <string list>
function = <string>

[../]

type FunctionDirichletBC

variable Required. Primary variable associated with this boundary condition.

boundary Required. List of boundary names or ids where this boundary condition will
apply.

function Required. Function that will give the value to be applied by this boundary
condition.

10.5.4 FunctionPresetBC

The FunctionPresetBC takes the same inputs as FunctionDirichletBC and also acts as a

Dirichlet boundary condition. However, the implementation is slightly different. FunctionPresetBC

causes the value of the boundary condition to be applied before the solve begins where FunctionDirichletBC
enforces the boundary condition as the solve progresses. In certain situations, one is better than

another.

10.6 DryCaskHeatFlux

The DryCaskHeatFlux BCis used to model the heat flux from a rod in the center of a fuel assem-
bly, stored inside a dry cask storage system (DCSS). The flux includes radiative and conductive
effects inside the assembly and conductive/convective effects from the assembly to ambient.
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[./decay_heat_in_dcss]

type =
variable =
boundary
bwr_or_pwr =
fill_gas =

start_time =
drying_duration

[../]

DryCaskHeatFlux
<variable>
<string list>
<string>
<string>
ambient_temperature =
cask_effective_htc =
<real>

<real>
<real>

= <real>

type
variable

boundary

bwr_or_pwr

fill gas
ambient_temperature

cask_effective_htc

start_time

drying_duration

DryCaskHeatFlux

Required. Primary variable associated with this boundary condi-
tion.
Required. List of boundaries where this BC will apply.

Required. Whether to use a typical geometry from a BWR or a
PWR assembly.

Required. helium, nitrogen, or vacuum.
Temperature outside the cask.

Required. Effective heat transfer coefficient from assembly to am-
bient (W/K).

The time when this BC will begin.

If drying (vacuum) is desired, it will be applied immediately after

the start_time. After drying in vacuum, the calculation switches
from vacuum fill gas to fill_gas specified by the user.

10.7 HydrogenPickup

The HydrogenPickup BC is used to model the flux of hydrogen into the clad that is caused by
oxide growth. The flux is approximated as a constant fraction of the hydrogen liberated by oxide

growth at the interface between the coolant water and the clad.

Note that this BC must be coupled to a variable that gives the thickness of the oxide over time,
such as with the OxideAux kernel. For this to work properly, OxideAux must be set to update

on updates to the residual; it will not work if the OxideAux is set to update on time steps.

[./hydrogen_pickup]

type = HydrogenPickup

variable = <variable>

boundary = <string list>
oxide_thickness = <variable>
pickup_fraction = <real> (0.15)
clad_thickness = <real> (660e-6)
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fuel_pin_geometry = <string>

[../]
type HydrogenPickup
variable Required. Primary variable associated with this boundary condition.
boundary Required. List of boundary names or ids where this boundary condi-
tion will apply.
oxide_thickness Required. The coupled variable that gives the oxide thickness on the

boundary.

pickup_fraction The fractional amount of hydrogen liberated by the oxide growth that
is absorbed into the clad.

clad_thickness The initial thickness of the clad; only needed if fuel_pin_geometry is
not specified.

fuel pin_geometry Name of the FuelPinGeometry object (see 23.1).

10.8 PlenumPressure

The PlenumPressure block is used to specify internal rod pressure as a function of temperature,
cavity volume, and moles of gas.

The PlenumPressure boundary condition uses two levels of nesting within the BCs block.
This allows the pressure to be applied properly in all coordinate directions although it is specified
one time only.

The volume and pressure specified in the plenum pressure block along with the initial condi-
tion specified in the temperature variable block are used to calculate the initial moles. The initial
moles are then used to update the plenum pressure throughout the simulation. It is worth noting
to make sure the initial temperature is set to the temperature of the gas when fabricated, usually
room temperature (293 K).

The postprocessors coupled to the plenum pressure boundary condition (gas volume and rod
interior temperature) need to be executed at each residual such that the plenum pressure is cal-
culated for that specific timestep. If calculated at each timestep, the calculation uses volume and
temperature from the previous step to calculate the plenum pressure for the current step, causing
a lag in the plenum pressure used and reported for that timestep.

[./PlenumPressure]
[./plenumpressure]

boundary = <string list>
initial_pressure = <real> (0)
initial_temperature = <real>
startup_time = <real> (0)

R = <real>

output_initial_moles = <string>
temperature = <string>

volume = <string>
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material_input
<string>

<real list>
refab_pressure

output =
refab_time =

refab_volume

= <string list>

= <real list>
<real 1list>

refab_type = <integer list>
[../]
[../]
boundary Required. List of boundary names or ids where this boundary

initial _pressure

initial_temperature

startup_time

R

output_initial_moles

temperature

volume

material_input

output

refab_time

refab_pressure
refab_temperature

refab_volume

10.9 Pressure

condition will apply.
The initial pressure in the plenum.

The initial temperature of the plenum. If not given, will use the
initial value from the Postprocessor given by temperature.
The amount of time during which the pressure will ramp from
zero to its true value.

Required. The universal gas constant. In BISON, SI units are
used, and R should be 8.3143.

If given, the name to use to report the initial moles of gas.

Required. The name of the Postprocessor holding the average
temperature value.

Required. The name of the Postprocessor holding the internal
volume.

The name of the Postprocessors that hold the amount of mate-
rial injected into the plenum.

If given, the name to use for reporting the plenum pressure value.
If not given, the block name will be used.

The time(s) at which the plenum pressure must be reinitialized
(likely due to fuel rod refabrication).

The pressure of fill gas at refabrication. Number of values must
match number in refab_time.

The temperature at refabrication. Number of values must match
number in refab_time.

The gas volume at refabrication. Number of values must match
number in refab_time.

The Pressure boundary condition uses two levels of nesting within the BCs block. This allows
the pressure to be applied properly in all coordinate directions although it is specified one time

only.
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[./Pressure]
[./pressure
boundary
factor =
function

[../]

[.

e

]

<real>

<string list>
(1)

<string>

boundary Required. List of boundary names or ids where this boundary condition will

apply.

factor Magnitude of pressure to be applied. If function is also given, factor is mul-
tiplied by the output of the function and then applied as the pressure.
function Function that will give the value to be applied by this boundary condition.
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11 Contact

Finite element contact enforces constraints between surfaces in the mesh. Mechanical contact
prevents penetration and develops contact forces. Thermal contact transfers heat between the
surfaces. In BISON there are currently two systems to choose from for mechanical contact:
Dirac and Constraint. Constaint based contact is recommended for two-dimensional problems
and Dirac for three-dimensional problems. Constraint contact is more robust but due to the patch
size requirement specified in the Mesh block constraint contact uses too much memory on 3D
problems. Depending upon the contact formalism chosen the solver options to be used change.
The details of the solver parameters recommended for Dirac and Constraint contact formalisms
are provided in Section 19.2.

11.1 Mechanical Contact

[Contact]
[./contact]

disp_x = <variable>
disp_y = <variable>
disp_z = <variable>
formulation = <string> (DEFAULT)
friction_coefficient = <real> (0)
master = <string>
model = <string> (frictionless)
normal_smoothing_distance = <real>
normal_smoothing_method = <string> (edge_based)

order = <string> (FIRST)
penalty = <real> (le8)

normalize_penalty = <bool> (false)
slave = <string>
system = <string> (Dirac)
tangential_tolerance = <real>
tension_release = <real> (0)
[../]
[
disp-x Required. Variable name for displacement variable in x

direction. Typically disp_x.

disp.y Variable name for displacement variable in y direction.

Typically disp_y.
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disp-z

formulation

friction_coefficient

master
model

normal_smoothing_distance

normal_smoothing method

order

penalty

normalize_penalty

slave

system

tangential_tolerance

tension_release

Variable name for displacement variable in z direction.
Typically disp_z.

One of DEFAULT, KINEMATIC, or PENALTY. DE-
FAULT is KINEMATIC.

The friction coefficient.

Required. The boundary id for the master surface.

One of frictionless, glued, or coulomb.

Distance from face edge in parametric coordinates over
which to smooth the contact normal. 0.1 is a reasonable
value.

One of edgebased or nodal normal based. It
nodal_normal_based, must also have a NodalNormals
block.

The order of the variable. Typical values are FIRST and
SECOND.

The penalty stiffness value to be used in the constraint.

Whether to normalize the penalty stiffness by the nodal area
of the slave node.
Required. The boundary id for the slave surface.

The system to use for constraint enforcement. Options are
Dirac (DiracKernel) or Constraint. The default system is
Dirac.

Tangential distance to extend edges of contact surfaces.
Tension release threshold. A node will not be released if

its tensile load is below this value. If negative, no tension
release will occur.

In LWR fuel analysis, the cladding surface is typically the master surface, and the fuel surface
is the slave surface. It is good practice to make the master surface the coarser of the two.

The robustness and accuracy of the mechanical contact algorithm is strongly dependent on
the penalty parameter. If the parameter is too small, inaccurate solutions are more likely. If the
parameter is too large, the solver may struggle.

The DEFAULT option uses an enforcement algorithm that moves the internal forces at a slave
node to the master face. The distance between the slave node and the master face is penalized.
The PENALTY algorithm is the traditional penalty enforcement technique.

11.2 Thermal Contact

11.2.1 GapHeatTransfer

[ThermalContact]
[./thermalcontact]
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type = GapHeatTransfer

disp_x = <variable>
disp_y = <variable>
disp_z = <variable>

emissivity_1
emissivity_2
gap_conductivity

<real> (0)
<real> (0)
= <real>

gap_conductivity_function

(1)

= <string>

gap_conductivity_function_variable = <string>
master = <string>

min_gap = <real> (le-6)

max_gap = <real> (leb)

normal_smoothing_distance
normal_smoothing_method =

= <real>
<string> (edge_based)

order = <string> (FIRST)
quadrature = <bool> (false)
slave = <string>
stefan_boltzmann = <real> (5.669e-8)
tangential_tolerance = <real>
variable = <string>
[../]
[]
type GapHeatTransfer
disp-x Variable name for displacement variable in x di-
rection. Typically disp_x. Optional.
disp-y Variable name for displacement variable in y di-
rection. Typically disp_y. Optional.
disp-z Variable name for displacement variable in z di-

emissivity_1
emissivity-2

gap_conductivity

gap-conductivity_function

gap-conductivity_function_variable

master

min_gap

max_gap

rection. Typically disp_z. Optional.

The emissivity of the fuel surface.

The emissivity of the cladding surface.

The thermal conductivity of the gap material.

Thermal conductivity of the gap material as a
function. Multiplied by gap_conductivity.

Variable to be used in
thermal_conductivity_function in place of
time.
Required. The boundary id for the master sur-
face.

The minimum permissible gap size.

The maximum permissible gap size.
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normal_smoothing_distance

normal_smoothing method

order

quadrature

slave

stefan_boltzmann

tangential_tolerance

variable

Distance from face edge in parametric coordi-
nates over which to smooth the contact normal.
0.1 is a reasonable value.

One of edge_based or nodal_normal_based.
If nodal_normal_based, must also have a
NodalNormals block.

The order of the variable. Typical values are
FIRST and SECOND.

Whether or not to use quadrature point-based
gap heat transfer.

Required. The boundary id for the slave sur-
face.
The Stefan-Boltzmann constant.

Tangential distance to extend edges of contact
surfaces.

Required. The temperature variable name.

The quadrature option is recommended with second-order meshes. Also note that the type
of conductance used depends on the value of the coord type parameter (XYZ (default), RZ, or
RSPHERICAL), which is defined in the Problem block.

11.2.2 GapHeatTransferLWR

GapHeatTransferLwR differs from GapHeatTransfer in that the gap conductivity is computed
based on the gases in the gap. To this may also be added the effect of solid-solid conduction.
The gas in the gap may be flushed in a refabrication step. (See also PlenumPressure (10.8).)

[ThermalContact]
[./thermalcontact]

type = GapHeatTransferLWR
contact_coef = <real> (10)
contact_pressure = <string>
disp_x = <variable>
disp_y = <variable>
disp_z = <variable>
emissivity_1 <real> (0)
emissivity_2 = <real> (0)
external_pressure = <real> (0)
initial_gas_fractions = <real
initial_moles = <string>

gas_released <string list>

gas_released_fractions = <real
jump_distance_fuel = <real> (0
jump_distance_clad = <real> (0
jump_distance_model = <string>

master

<string>

list> (1 0 0 0 0 0 0 O O 0)

list> (0 0 0.153 0.847 0 0 0 0 0 0)
)
)

(DIRECT)
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meyer_hardness <real>
(le-6)
(leb)

min_gap = <real>
max_gap = <real>

(0.68¢e9)

normal_smoothing_distance = <real>

normal_smoothing_method = <string>
(FIRST)
(false)

order = <string>
quadrature = <bool>
refab_gas_fractions

(edge_based)

<real 1list>

refab_time = <real list>
refab_type = <integer list>

roughness_fuel = <real>
roughness_clad = <real>
roughness_coef = <real>

interaction_layer =
slave = <string>
stefan_boltzmann =

tangential_tolerance

variable = <string>
[../]
[]

<real>
= <real>

(le-06)
(le-6)
(1.5)

<integer> (0)

(5.669e-8)

type
contact_coef

contact_pressure
disp-_x

disp.-y

disp-z
emissivity_1l
emissivity_2

external _pressure

initial_gas_fractions

initial_moles

gas-released

GapHeatTransferLWR

The leading coefficient on the solid-solid conduction rela-
tion (1/4/m).

The contact pressure
contact_pressure.

variable. Typically

Variable name for displacement variable in x direction.
Typically disp_x. Optional.

Variable name for displacement variable in y direction.
Typically disp_y. Optional.

Variable name for displacement variable in z direction.
Typically disp-z. Optional.

The emissivity of the fuel surface.

The emissivity of the cladding surface.

The external (gas) pressure.

The initial fractions of constituent gases (helium, ar-
gon, krypton, xenon, hydrogen, nitrogen, oxygen, carbon
monoxide, carbon dioxide, water vapor).

The Postprocessor that will give the initial moles of gas.

List of one or more Postprocessors that give the gas re-
leased.
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gas_released_fractions

jump_distance_fuel
jump_distance_clad

jump_distance_model

master
meyer_hardness
min_gap
max_-gap

normal_smoothing_distance

normal_smoothing method

order

plenum_pressure

quadrature

refab_gas_fractions

refab_time

refab_type

roughness_fuel
roughness_clad
roughness_coef

interaction_layer

slave

stefan_boltzmann

The fraction of released gas that is assigned to helium, ar-
gon, krypton, xenon, hydrogen, nitrogen, oxygen, carbon
monoxide, carbon dioxide, and water vapor. One set of
fractions for each Postprocessor listed in gas_released.
The temperature jump distance of the fuel.
The temperature jump distance of the clad.

One of DIRECT (specify distances directly) or KENNARD
(jump distances computed based on gas properties).

The boundary id for the master surface.

The Meyer hardness of the softer material (Pa).
The minimum permissible gap size.

The maximum permissible gap size.

Distance from face edge in parametric coordinates over
which to smooth the contact normal. 0.1 is a reasonable
value.

One of edge_based or nodal-normal_based. If
nodal_normal_based, must also have a NodalNormals
block.

The order of the variable. Typical values are FIRST and
SECOND.

The name of the plenum pressure Postprocessor.

Whether or not to use quadrature point-based gap heat
transfer.

The fractions of constituent gases at refabrication (helium,
argon, krypton, xenon, hydrogen, nitrogen, oxygen, carbon
monoxide, carbon dioxide, water vapor).

The time(s) at which refabrication occurs. If multiple times
are given, multiple sets of refab_gas_fractions and mul-
tiple refab_types must be given.

One of 0 (instantaneous reset, evolving gas fraction there-
after) or 1 (instantaneous reset, constant gas fraction there-
after).

The roughness of the fuel surface.
The roughness of the cladding surface.
The coefficient for the roughness summation.

One of 0 (fuel-cladding chemical interaction layer not con-
sidered) and 1 (interaction layer considered).

The boundary id for the slave surface.

The Stefan-Boltzmann constant.
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tangential_tolerance Tangential distance to extend edges of contact surfaces.

variable Required. The temperature variable name.
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12 AuxKernels

AuxKernels are used to compute values for AuxVariables. They often compute quantities
based on functions, solution variables, and material properties. AuxKernels can apply to blocks
or boundaries. If not block or boundary is specified, the AuxKernel applies to the entire model.

[AuxKernels]

[./name]
type = <AuxKernel type>
block = <string list>
boundary = <string list>
[../]
[
type Type of auxiliary kernel.
block List of blocks. Either block numbers or names.

boundary List of boundaries (side sets). Either boundary numbers or names.

12.1 AuxKernels for Output

12.1.1 MaterialReal Aux

The MaterialRealAux AuxKernel is used to output material properties. Typically, the Aux-
Variable computed by MaterialTensorAux will be an element-level, constant variable. The
computed value will be the volume-averaged quantity over the element.

[./materialrealaux]
type = MaterialRealAux

property = <material property>
variable = <variable>
[../]
type MaterialRealAux

property Required. Name of material property.
variable Required. Name of AuxVariable that will hold result.
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12.1.2 MaterialTensorAux

The MaterialTensorAux AuxKernel is used to output quantities related to second-order ten-
sors used as material properties. Stress and strain are common examples of these tensors. The
AuxKernel allows output of specific tensor entries or quantities computed from the entire tensor.
Typically, the AuxVariable computed by MaterialTensorAux will be an element-level, con-
stant variable. By default, the computed value will be the volume-averaged quantity over the
element. If the parameter qp_select is set to the value of an integration point number (0, 1, ..., n),
the computed valued will be the value at that integration point.

[./materialtensoraux]
type = MaterialTensorAux
tensor = <material property tensor>
variable = <variable>
index = <integer>
quantity = <string>
pointl = <vector> (0, 0, 0)
point2 = <vector> (0, 1,
gp_select = <integer> (0, 1, ..., n)
[../]

type MaterialTensorAux

tensor Required. Name of second-order tensor material property. A typical second-
order tensor material property is stress.

variable Required. Name of AuxVariable that will hold result.

index Index into tensor, from O to 5 (XX, yy, zz, Xy, ¥z, zx). Either index or quantity
must be specified.

quantity One of VonMises, PlasticStrainMag, Hydrostatic, Hoop, Radial,
Axial, MaxPrincipal, MedPrincipal, MinPrincipal, FirstInvariant,
SecondInvariant, ThirdInvariant, or TriAxiality. Either index or
quantity must be specified.

12.2 AuxKernels for Specifying Fission Rate
Note that these AuxKernels are not needed if the Burnup block (see Chapter 13) is present.

12.2.1 FissionRateAux

The FissionRateAux AuxKernel simply sets the value of a variable that stores the fission rate
(fissions/m>/s) to either a constant value or a value prescribed by a function. If both function
and value are provided, value is used as a scaling factor on the function.

[./fissionrateaux]
type = FissionRateAux
variable = <string>
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[.

block = <string list>
function = <string>
value = <real>
variable = <string>

e

type FissionRateAux

variable Required. Name of AuxVariable that will hold fission rate. Typically

fission_rate.

value Value of fission rate. If function is present, value is multiplied by the function

value.

function Function describing the fission rate.

12.2.2 FissionRateAuxLWR

FissionRateAuxLWR is designed to calculate fission rate given rod averaged linear power and
pellet dimensions.

[

/fissionrateauxlwr}
type = FissionRateAuxLWR

value = <real> (1)
rod_ave_lin_pow= <string>
axial_power_profile = <string>
pellet_diameter = <real>
pellet_inner_diameter = <real> (0)
fuel_volume_ratio = <real> (1)
energy_per_fission = <real> (3.28451le-11)
variable = <string>
[../]
value Fission rate if rod_ave_lin_pow is not present. Scale factor if
rod_ave_lin_pow is given.
variable Required. Name of AuxVariable that will hold fission rate.

Typically fission_rate.

rod_ave_lin_pow Function describing rod averaged linear power. This power is

the total power, the power from the volumetric fission rate times
the volume of fuel times the energy per fission.

axial_power_profile Function describing axial power profile.

pellet _diameter Required. The diameter of the fuel.

pellet_inner_diameter The inner diameter of the fuel.

fuel volume_ratio Reduction factor for deviation from right circular cylinder fuel.

The ratio of actual volume to right circular cylinder volume.

energy.per_fission The energy released per fission in J/fission.
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12.2.3 FissionRateFromPowerDensity

Like FissionRateAux, the FissionRateFromPowerDensity AuxKernel sets the fission rate
based on a function and a scaling factor. This AuxKernel is intended to be used specifically in
the case where the input function defines the power density (in W/m?). The power density is
divided by user-provided constant that defines the energy per fission (J/fission) to provide the
fission rate in (fissions/m3/s).

[./fissionratefrompowerdensity]

type = FissionRateFromPowerDensity
variable = <string>
block = <string list>
function = <string>
enerqgy_per_fission = <real>
[../]
type FissionRateAux
variable Required. Name of AuxVariable that will hold fission rate. Typi-

cally fission_rate.

function Required. Function describing the power density in W/m?.

energy per_fission Required. Energy released per fission in J/fission.

12.3 Other AuxKernels

12.3.1 AI203Aux

[./al203aux]
type = Al203Aux
variable = <string>
function = <string>
model = <string> (function)
temp = <string>

[../]

type A1203Aux
variable Required. Variable name corresponding to the A1203 thickness.

function Function describing the A1203 thickness as a function of time.

model One of function or griess. The griess option invokes a correlation appropriate for
plate fuel.
temp Variable name for temperature variable. Typically temp.
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12.3.2 BurnupAux

BurnupAux computes burnup given the fission rate. Note that this AuxKernel is not needed if
the Burnup block (see Chapter 13) is present.

[./burnupaux]
type = BurnupAux

fission_rate = <string>
density = <real>
molecular_weight = <real> (0.270)
[../]
type BurnupAux
variable Required. Variable name corresponding to the burnup. Typically
burnup.
fission_rate Required. Variable name corresponding to the fission rate. Typically
fission_rate.
density Required. The initial fuel density.

molecular_ weight The molecular weight.

12.3.3 FastNeutronFluenceAux

[./fastneutronfluenceaux]
type = FastNeutronFluenceAux
variable = <string>
fast_neutron_flux = <string>

[../]

type FastNeutronFluenceAux

variable Required. Variable name corresponding to the fast neutron fluence.
Typically fast_neutron_fluence.

fast_neutron_flux Required. Variable name corresponding to the fast neutron flux. Typ-
ically fast_neutron_flux.

12.3.4 FastNeutronFluxAux

[./fastneutronfluxaux]
type = FastNeutronFluxAux
variable = <string>
rod_ave_lin_pow = <string>
axial_power_profile = <string>
factor = <real>
function = <string>
g_variable = <string>
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type FastNeutronFluxAux

variable Required. Variable name corresponding to the fast neutron flux.
Typically fast_neutron_flux.

rod_ave_lin_pow Function describing rod averaged linear power. This power is the
total power, the power from the volumetric fission rate times the
volume of fuel times the energy per fission.

axial_power_profile Function describing axial power profile.

factor The fast neutron flux if function, rod.ave_lin_pow, or
g_variable is not given. Otherwise, a scale factor. Recommended
scale factor value is 3e13 (n/(m?-s)/(W/m)).

function Function that describes the fast neutron flux.
g_variable Variable holding linear heat rate in pellet in W/m.

Only one of function, rod_ave_lin_pow, and q_variable may be given.

12.3.5 GrainRadiusAux

The GrainRadiusAux model is a simple empirical model for calculating grain growth. This can
be used with the Sifgrs model (17.1).

[./grainradiusaux]

type = GrainRadiusAux
variable = <string>
temp = <string>
[../]
type GrainRadiusAux

variable Required. Variable name corresponding to the fuel grain radius.

temp Required. Variable name for temperature variable. Typically temp.

12.3.6 OxideAux

[./oxideaux]
type = OxideAux

variable = <string>
fast_neutron_flux = <string>
lithium_concentration = <real> (0)
model_option = <int> (1)
oxide_scale_factor = <real> (1)
tin_content = <real> (1.38)
temperature = <string>
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use_coolant_channel = <bool> (false)
start_time = <real> (0)
end_time = <real> (inf)
type OxideAux
variable Required. Variable name corresponding to the zirconia thick-

fast_neutron_flux

lithium_concentration

model_option

oxide_scale_factor

tin_content

temperature

use_coolant_model

start_time

end_time

12.3.7 PelletldAux

ness.
Variable name corresponding to the fast neutron flux. Typically
fast_neutron_flux.

Lithium concentration in ppm.

If 1, uses the EPRI KWU CE model. Otherwise, uses the EPRI
SLI model.

Scale factor applied to the rate of oxide growth.

Tin content in wt%.

Required. Variable name for temperature variable. Typically
temp.

If true, model will adjust surface temperature based on the
coolant channel model.

Start the oxide growth at a specific time.

End the oxide growth at a specific time, for example in dry stor-
age.

PelletIdAux is used to compute a pellet number. It may be used with a discrete pellet or

smeared fuel column mesh.

[./pelletidaux]
type = PelletIdAux
variable = <string>
a_lower = <real>
a_upper = <real>
number_pellets = <integer>
[../]
type Pelletld Aux
variable Required. AuxVariable name corresponding to the Pellet ID.
a_lower Required. The lower axial coordinate of the fuel stack.
a_upper Required. The upper axial coordinate of the fuel stack.

number_pellets

Required. Number of fuel pellets.
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13 Burnup

The Burnup block computes fission rate and burnup for LWR fuel including the radial power
factor. It is not appropriate for other fuel configurations. Use of the Burnup block will cause

BISON to create and populate burnup, fission_rate, and optionally other AuxVariables.

The radial power factor calculation is performed on a secondary numerical grid, created inter-
nally by BISON. This is the reason for the num_radial and num_axial line commands. Once the
fission rate, burnup, and other quantities are computed on this secondary grid, they are mapped

back to the finite element mesh.

[Burnup]
[./burnup]

block = <string list>
rod_ave_linear_power = <string>
axial_power_profile = <string>
num_radial = <integer>
num_axial = <integer>
fuel_pin_geometry = <string>
a_lower = <real>
a_upper = <real>
fuel_inner_radius = <real> (0)
fuel _outer_radius = <real> (0.0041)
fuel _volume_ratio = <real> (1)
density = <real>
energy_per_fission = <real> (3.28451le-11)

[.

[]

pl = <real> (3.45)

i_enrich = <real 1list> (0.05, 0.95, 0, 0, 0, 0)

sigma_c = <real list> (9.7, 0.78, 58.6, 100, 50, 80)
sigma_f = <real list> (41.5, 0, 105, 0.584, 120, 0.458)

sigma_a_thermal = <real list> (sum of sigma_c and sigma_f)
reactor_type = <string> (LWR)
N235 = <string>

N238 = <string>
N238 = <string>
N240 = <string>
N241 = <string>
N242 = <string>
RPF = <string>
e

block Required. List of fuel blocks. Either block numbers or names.
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rod_ave_lin_pow

axial _power_profile

num_radial

num_axial

fuel pin_geometry

a_lower
a_upper
fuel_inner_radius

fuel_outer_radius
fuel_volume_ratio

density

energy_per_fission

pl

i_enrich

sigma_c

sigma_f

sigma_a_thermal

reactor_type

N235

N238

N239

N240

N241

Function describing rod averaged linear power. This power is the
total power, the power from the volumetric fission rate times the
volume of fuel times the energy per fission.

Function describing axial power profile.

Number of radial divisions in secondary grid used to compute ra-
dial power profile.

Number of axial divisions in secondary grid used to compute radial
power profile.

Name of the FuelPinGeometry object (see 23.1).

Required if fuel_pin_geometry is not specified. The lower axial
coordinate of the fuel stack.

Required if fuel_pin_geometry is not specified. The upper axial
coordinate of the fuel stack.

The inner radius of the fuel.

The outer radius of the fuel.

Reduction factor for deviation from right circular cylinder fuel. The
ratio of actual volume to right circular cylinder volume.
Required. The initial fuel density.

The energy released per fission in J/fission.

Distribution function coefficient p1. If not given, will take default
value based on reactor_type.

The initial enrichment for the six isotopes.

The capture cross sections for the six isotopes. If not given, will
take default value based on reactor_type.

The fission cross sections for the six isotopes. If not given, will
take default value based on reactor_type.

The absorption (thermal) cross sections for the six isotopes.
Reactor type. One of LWR or HWR. Will set default values for p1,
sigma_f, and sigma_c if those are not otherwise specified.
Indicates that the output of the concentration of N235 is required.
Typically N235.

Indicates that the output of the concentration of N238 is required.
Typically N238.

Indicates that the output of the concentration of N239 is required.
Typically N239.

Indicates that the output of the concentration of N240 is required.
Typically N240.

Indicates that the output of the concentration of N241 is required.
Typically N241.
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N242 Indicates that the output of the concentration of N242 is required.
Typically N242.

RPF Indicates that the output of the radial power factor is required. Typ-
ically RPF.
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14 Kernels

Kernels are used to evaluate integrals associated with a given term in a PDE. They often com-
pute quantities based on functions, solution variables, auxiliary variables, and material prop-
erties. All Kernels act on blocks. If no block is specified, the Kernel will act on the entire

model.

[Kernels]
[./name]
type = <kernel type>
block = <string list>

[../]

type  Type of kernel.
block List of blocks. Either block numbers or names.

14.1 Arrhenius Diffusion

Kernel for applying an Arrhenius diffusion term. If present, an ArrheniusDiffusionCoef
material model must also be present.

[./arrheniusdiffusion]
type = ArrheniusDiffusion
variable = <variable>

[../]

type ArrheniusDiffusion
variable Required. Variable associated with this volume integral.

14.2 BodyForce

Kernel for applying an arbitrary body force to the model.

[./bodyforce]
type = BodyForce
variable = <variable>
value = <real> (0)
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function = <string> (1)

[../]
type BodyForce
variable Required. Variable associated with this volume integral.
value Constant included in volume integral. Multiplied by the value of function if
present.

function Function to be multiplied by value and used in the volume integral.

14.3 Gravity

Gravity may be applied to the model with this kernel. The required density is computed and
provided internally given inputs in the Materials block.

[./gravity]
type = Gravity
variable = <variable>
value = <real> (0)
[../]
type Gravity

variable Required. Variable name corresponding to the displacement direction in which
the gravity load should be applied.

value Acceleration of gravity. Typically -9.81 (m/s?).

14.4 Heat Conduction

Kernel for diffusion of heat or divergence of heat flux.

[./heatconduction]
type = HeatConduction

variable = <variable>
[../]
type HeatConduction
variable Required. Variable name corresponding to the heat conduction equation. Typi-
cally temp.

14.5 Heat Conduction Time Derivative

Kernel for pC,dT /ot term of the heat equation.
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[./heatconductiontimederivative]

type = HeatConductionTimeDerivative
variable = <variable>
[../]
type HeatConductionTimeDerivative

variable Required. Variable name corresponding to the heat conduction equation. Typi-
cally temp.

14.6 Heat Source

The HeatSource kernel applies a volumetric heat source to specified blocks within the model.
Built on the BodyForce kernel’s code, the Heat Source kernel provides a more relevant name
for easier input-file specification.

[./heatsource]
type = HeatSource
variable = <variable>
value = <real> (1)
function = <string> (1)
block = <string list>

[../]

type HeatSource

variable Required. The variable associated with the heat source.

value Value of the heat source; will be multiplied by the optional function.
function The function describing the volumetric heat