Isotropic Plasticity for FeCrAl

Calculates the isotropic plasticity of FeCrAl

warning:Deprecated Solid Mechanics Material

The functionality of this solid mechanics material is being replaced in the TensorMechanics system by FeCrAlPlasticityUpdate.

Description

The isotropic plasticity model for the ORNL C35M alloy, IsoPlasticityFeCrAl, can be used with the combined creep and plasticity model available within MOOSE. This model calculates the yield stress as a function of temperature based upon experimental data by Yamamoto et al. (2015). The data is obtained from Figure 10 in the reference. Table 1 shows the yield stress values as a function of temperature. These tabulated values are treated as a PiecewiseLinear function of temperature. The minimum or maximum value for yield stress is used if the temperature is outside the bounds presented here.

Table 1: Yield Stress as a Function of Temperature

Temp. Range (K)Yield Stress (MPa)
290.735446.819
546.411313.964
640.150295.872
824.832225.901
1007.2467.237

Example Input Syntax


[./plasticity]
  type = IsoPlasticityFeCrAl
  block = '1 2 3 4'
  yield_stress = 1e-6 #should be ignored
  hardening_constant = 0.0
  temp = temp
[../]
(test/tests/fecral/plasticity/fecral_plasticity_rz.i)

Input Parameters

  • constitutive_modelConstitutiveModel to use (optional)

    C++ Type:std::string

    Description:ConstitutiveModel to use (optional)

  • cracking_stress0The stress threshold beyond which cracking occurs. Must be positive.

    Default:0

    C++ Type:double

    Description:The stress threshold beyond which cracking occurs. Must be positive.

  • store_stress_olderFalseParameter which indicates whether the older stress state, required for HHT time integration, needs to be stored

    Default:False

    C++ Type:bool

    Description:Parameter which indicates whether the older stress state, required for HHT time integration, needs to be stored

  • cracking_releaseabruptThe cracking release type. Choices are abrupt (default) and exponential.

    Default:abrupt

    C++ Type:std::string

    Description:The cracking release type. Choices are abrupt (default) and exponential.

  • bulk_modulusThe bulk modulus for the material.

    C++ Type:double

    Description:The bulk modulus for the material.

  • acceptable_multiplier10Factor applied to relative and absolute tolerance for acceptable convergence if iterations are no longer making progress

    Default:10

    C++ Type:double

    Description:Factor applied to relative and absolute tolerance for acceptable convergence if iterations are no longer making progress

  • formulationElement formulation. Choices are: Nonlinear3D NonlinearRZ AxisymmetricRZ SphericalR Linear PlaneStrain NonlinearPlaneStrain

    C++ Type:MooseEnum

    Description:Element formulation. Choices are: Nonlinear3D NonlinearRZ AxisymmetricRZ SphericalR Linear PlaneStrain NonlinearPlaneStrain

  • cracking_beta1The coefficient used in the exponetional model.

    Default:1

    C++ Type:double

    Description:The coefficient used in the exponetional model.

  • compute_InteractionIntegralFalseWhether to compute the Interaction Integral.

    Default:False

    C++ Type:bool

    Description:Whether to compute the Interaction Integral.

  • thermal_expansion_reference_temperatureReference temperature for mean thermal expansion function.

    C++ Type:double

    Description:Reference temperature for mean thermal expansion function.

  • stress_free_temperatureThe stress-free temperature. If not specified, the initial temperature is used.

    C++ Type:double

    Description:The stress-free temperature. If not specified, the initial temperature is used.

  • hardening_functionTrue stress as a function of plastic strain

    C++ Type:FunctionName

    Description:True stress as a function of plastic strain

  • initial_stressThe initial stress tensor (xx, yy, zz, xy, yz, zx)

    C++ Type:std::vector

    Description:The initial stress tensor (xx, yy, zz, xy, yz, zx)

  • thermal_expansionThe thermal expansion coefficient.

    C++ Type:double

    Description:The thermal expansion coefficient.

  • poissons_ratioPoisson's ratio for the material.

    C++ Type:double

    Description:Poisson's ratio for the material.

  • compute_methodThe method used in the stress calculation.

    C++ Type:MooseEnum

    Description:The method used in the stress calculation.

  • increment_calculationRashidApproxThe algorithm to use when computing the incremental strain and rotation (RashidApprox or Eigen). For use with Nonlinear3D/RZ formulation.

    Default:RashidApprox

    C++ Type:std::string

    Description:The algorithm to use when computing the incremental strain and rotation (RashidApprox or Eigen). For use with Nonlinear3D/RZ formulation.

  • strain_zzThe zz strain

    C++ Type:std::vector

    Description:The zz strain

  • volumetric_locking_correctionTrueSet to false to turn off volumetric locking correction

    Default:True

    C++ Type:bool

    Description:Set to false to turn off volumetric locking correction

  • boundaryThe list of boundary IDs from the mesh where this boundary condition applies

    C++ Type:std::vector

    Description:The list of boundary IDs from the mesh where this boundary condition applies

  • max_inelastic_increment0.0001The maximum inelastic strain increment allowed in a time step

    Default:0.0001

    C++ Type:double

    Description:The maximum inelastic strain increment allowed in a time step

  • scale_factor_ys1Scale factor to be applied to yield stress

    Default:1

    C++ Type:double

    Description:Scale factor to be applied to yield stress

  • active_crack_planesPlanes on which cracks are allowed (0,1,2 -> x,z,theta in RZ)

    C++ Type:std::vector

    Description:Planes on which cracks are allowed (0,1,2 -> x,z,theta in RZ)

  • disp_zThe z displacement

    C++ Type:std::vector

    Description:The z displacement

  • disp_yThe y displacement

    C++ Type:std::vector

    Description:The y displacement

  • cracking_residual_stress0The fraction of the cracking stress allowed to be maintained following a crack.

    Default:0

    C++ Type:double

    Description:The fraction of the cracking stress allowed to be maintained following a crack.

  • shear_modulusThe shear modulus of the material.

    C++ Type:double

    Description:The shear modulus of the material.

  • scalar_strain_zzThe zz strain (scalar variable)

    C++ Type:std::vector

    Description:The zz strain (scalar variable)

  • thermal_expansion_function_typeType of thermal expansion function. Choices are: instantaneous mean

    C++ Type:MooseEnum

    Description:Type of thermal expansion function. Choices are: instantaneous mean

  • disp_rThe r displacement

    C++ Type:std::vector

    Description:The r displacement

  • appended_property_nameName appended to material properties to make them unique

    C++ Type:std::string

    Description:Name appended to material properties to make them unique

  • cracking_stress_functionThe cracking stress as a function of time and location

    C++ Type:FunctionName

    Description:The cracking stress as a function of time and location

  • poissons_ratio_functionPoisson's ratio as a function of temperature.

    C++ Type:FunctionName

    Description:Poisson's ratio as a function of temperature.

  • dep_matl_propsNames of material properties this material depends on.

    C++ Type:std::vector

    Description:Names of material properties this material depends on.

  • compute_material_timestep_limitFalseWhether to compute the matl_timestep_limit material property

    Default:False

    C++ Type:bool

    Description:Whether to compute the matl_timestep_limit material property

  • hardening_constantHardening slope

    C++ Type:double

    Description:Hardening slope

  • yield_stress_functionYield stress as a function of temperature

    C++ Type:FunctionName

    Description:Yield stress as a function of temperature

  • computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the Material via MaterialPropertyInterface::getMaterial(). Non-computed Materials are not sorted for dependencies.

    Default:True

    C++ Type:bool

    Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the Material via MaterialPropertyInterface::getMaterial(). Non-computed Materials are not sorted for dependencies.

  • youngs_modulusYoung's modulus of the material.

    C++ Type:double

    Description:Young's modulus of the material.

  • tempCoupled Temperature

    C++ Type:std::vector

    Description:Coupled Temperature

  • max_its30Maximum number of Newton iterations

    Default:30

    C++ Type:unsigned int

    Description:Maximum number of Newton iterations

  • cracking_neg_fractionThe fraction of the cracking strain at which a transitition begins during decreasing strain to the original stiffness.

    C++ Type:double

    Description:The fraction of the cracking strain at which a transitition begins during decreasing strain to the original stiffness.

  • thermal_expansion_functionThermal expansion coefficient as a function of temperature.

    C++ Type:FunctionName

    Description:Thermal expansion coefficient as a function of temperature.

  • compute_JIntegralFalseWhether to compute the J Integral.

    Default:False

    C++ Type:bool

    Description:Whether to compute the J Integral.

  • yield_stressThe point at which plastic strain begins accumulating

    C++ Type:double

    Description:The point at which plastic strain begins accumulating

  • max_cracks3The maximum number of cracks allowed at a material point.

    Default:3

    C++ Type:unsigned int

    Description:The maximum number of cracks allowed at a material point.

  • large_strainFalseWhether to include large strain terms in AxisymmetricRZ, SphericalR, and PlaneStrain formulations.

    Default:False

    C++ Type:bool

    Description:Whether to include large strain terms in AxisymmetricRZ, SphericalR, and PlaneStrain formulations.

  • disp_xThe x displacement

    C++ Type:std::vector

    Description:The x displacement

  • absolute_tolerance1e-11Absolute convergence tolerance for Newton iteration

    Default:1e-11

    C++ Type:double

    Description:Absolute convergence tolerance for Newton iteration

  • youngs_modulus_functionYoung's modulus as a function of temperature.

    C++ Type:FunctionName

    Description:Young's modulus as a function of temperature.

  • relative_tolerance1e-08Relative convergence tolerance for Newton iteration

    Default:1e-08

    C++ Type:double

    Description:Relative convergence tolerance for Newton iteration

  • blockThe list of block ids (SubdomainID) that this object will be applied

    C++ Type:std::vector

    Description:The list of block ids (SubdomainID) that this object will be applied

  • lambdaLame's first parameter for the material.

    C++ Type:double

    Description:Lame's first parameter for the material.

Optional Parameters

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Description:Set the enabled status of the MooseObject.

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Description:The seed for the master random number generator

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Description:Determines whether this object is calculated using an implicit or explicit form

  • constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeSubdomainProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

    Default:NONE

    C++ Type:MooseEnum

    Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeSubdomainProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

Advanced Parameters

  • internal_solve_output_onon_errorWhen to output internal Newton solve information

    Default:on_error

    C++ Type:MooseEnum

    Description:When to output internal Newton solve information

  • internal_solve_full_iteration_historyFalseSet true to output full internal Newton iteration history at times determined by `internal_solve_output_on`. If false, only a summary is output.

    Default:False

    C++ Type:bool

    Description:Set true to output full internal Newton iteration history at times determined by `internal_solve_output_on`. If false, only a summary is output.

Debug Parameters

  • output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)

    C++ Type:std::vector

    Description:List of material properties, from this material, to output (outputs must also be defined to an output type)

  • outputsnone Vector of output names were you would like to restrict the output of variables(s) associated with this object

    Default:none

    C++ Type:std::vector

    Description:Vector of output names were you would like to restrict the output of variables(s) associated with this object

Outputs Parameters

Input Files

References

  1. Y. Yamamoto, B.A. Pint, K.A. Terrani, K.G. Field, Y. Yang, and L.L. Snead. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors. Journal of Nuclear Materials, 467:703–716, 2015.[BibTeX]